1 - 20 \% x = \frac { 1 } { 2 }
Whakaoti mō x
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
1-\frac{1}{5}x=\frac{1}{2}
Whakahekea te hautanga \frac{20}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
-\frac{1}{5}x=\frac{1}{2}-1
Tangohia te 1 mai i ngā taha e rua.
-\frac{1}{5}x=\frac{1}{2}-\frac{2}{2}
Me tahuri te 1 ki te hautau \frac{2}{2}.
-\frac{1}{5}x=\frac{1-2}{2}
Tā te mea he rite te tauraro o \frac{1}{2} me \frac{2}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{5}x=-\frac{1}{2}
Tangohia te 2 i te 1, ka -1.
x=-\frac{1}{2}\left(-5\right)
Me whakarea ngā taha e rua ki te -5, te tau utu o -\frac{1}{5}.
x=\frac{-\left(-5\right)}{2}
Tuhia te -\frac{1}{2}\left(-5\right) hei hautanga kotahi.
x=\frac{5}{2}
Whakareatia te -1 ki te -5, ka 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}