Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1-2\left(x-3\right)\left(x-11\right)=0
Whakareatia te -1 ki te 2, ka -2.
1+\left(-2x+6\right)\left(x-11\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-3.
1-2x^{2}+28x-66=0
Whakamahia te āhuatanga tuaritanga hei whakarea te -2x+6 ki te x-11 ka whakakotahi i ngā kupu rite.
-65-2x^{2}+28x=0
Tangohia te 66 i te 1, ka -65.
-2x^{2}+28x-65=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-28±\sqrt{28^{2}-4\left(-2\right)\left(-65\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 28 mō b, me -65 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\left(-2\right)\left(-65\right)}}{2\left(-2\right)}
Pūrua 28.
x=\frac{-28±\sqrt{784+8\left(-65\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-28±\sqrt{784-520}}{2\left(-2\right)}
Whakareatia 8 ki te -65.
x=\frac{-28±\sqrt{264}}{2\left(-2\right)}
Tāpiri 784 ki te -520.
x=\frac{-28±2\sqrt{66}}{2\left(-2\right)}
Tuhia te pūtakerua o te 264.
x=\frac{-28±2\sqrt{66}}{-4}
Whakareatia 2 ki te -2.
x=\frac{2\sqrt{66}-28}{-4}
Nā, me whakaoti te whārite x=\frac{-28±2\sqrt{66}}{-4} ina he tāpiri te ±. Tāpiri -28 ki te 2\sqrt{66}.
x=-\frac{\sqrt{66}}{2}+7
Whakawehe -28+2\sqrt{66} ki te -4.
x=\frac{-2\sqrt{66}-28}{-4}
Nā, me whakaoti te whārite x=\frac{-28±2\sqrt{66}}{-4} ina he tango te ±. Tango 2\sqrt{66} mai i -28.
x=\frac{\sqrt{66}}{2}+7
Whakawehe -28-2\sqrt{66} ki te -4.
x=-\frac{\sqrt{66}}{2}+7 x=\frac{\sqrt{66}}{2}+7
Kua oti te whārite te whakatau.
1-2\left(x-3\right)\left(x-11\right)=0
Whakareatia te -1 ki te 2, ka -2.
1+\left(-2x+6\right)\left(x-11\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-3.
1-2x^{2}+28x-66=0
Whakamahia te āhuatanga tuaritanga hei whakarea te -2x+6 ki te x-11 ka whakakotahi i ngā kupu rite.
-65-2x^{2}+28x=0
Tangohia te 66 i te 1, ka -65.
-2x^{2}+28x=65
Me tāpiri te 65 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{-2x^{2}+28x}{-2}=\frac{65}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{28}{-2}x=\frac{65}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-14x=\frac{65}{-2}
Whakawehe 28 ki te -2.
x^{2}-14x=-\frac{65}{2}
Whakawehe 65 ki te -2.
x^{2}-14x+\left(-7\right)^{2}=-\frac{65}{2}+\left(-7\right)^{2}
Whakawehea te -14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -7. Nā, tāpiria te pūrua o te -7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-14x+49=-\frac{65}{2}+49
Pūrua -7.
x^{2}-14x+49=\frac{33}{2}
Tāpiri -\frac{65}{2} ki te 49.
\left(x-7\right)^{2}=\frac{33}{2}
Tauwehea x^{2}-14x+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{\frac{33}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-7=\frac{\sqrt{66}}{2} x-7=-\frac{\sqrt{66}}{2}
Whakarūnātia.
x=\frac{\sqrt{66}}{2}+7 x=-\frac{\sqrt{66}}{2}+7
Me tāpiri 7 ki ngā taha e rua o te whārite.