Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5-x^{4}-5x^{2}=0
Tāpirihia te 1 ki te 4, ka 5.
-t^{2}-5t+5=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-1\right)\times 5}}{-2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -1 mō te a, te -5 mō te b, me te 5 mō te c i te ture pūrua.
t=\frac{5±3\sqrt{5}}{-2}
Mahia ngā tātaitai.
t=\frac{-3\sqrt{5}-5}{2} t=\frac{3\sqrt{5}-5}{2}
Whakaotia te whārite t=\frac{5±3\sqrt{5}}{-2} ina he tōrunga te ±, ina he tōraro te ±.
x=-i\sqrt{\frac{3\sqrt{5}+5}{2}} x=i\sqrt{\frac{3\sqrt{5}+5}{2}} x=-\sqrt{\frac{3\sqrt{5}-5}{2}} x=\sqrt{\frac{3\sqrt{5}-5}{2}}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
5-x^{4}-5x^{2}=0
Tāpirihia te 1 ki te 4, ka 5.
-t^{2}-5t+5=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-1\right)\times 5}}{-2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -1 mō te a, te -5 mō te b, me te 5 mō te c i te ture pūrua.
t=\frac{5±3\sqrt{5}}{-2}
Mahia ngā tātaitai.
t=\frac{-3\sqrt{5}-5}{2} t=\frac{3\sqrt{5}-5}{2}
Whakaotia te whārite t=\frac{5±3\sqrt{5}}{-2} ina he tōrunga te ±, ina he tōraro te ±.
x=\frac{\sqrt{6\sqrt{5}-10}}{2} x=-\frac{\sqrt{6\sqrt{5}-10}}{2}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.