Aromātai
\frac{1}{4}=0.25
Tauwehe
\frac{1}{2 ^ {2}} = 0.25
Tohaina
Kua tāruatia ki te papatopenga
1-\left(\frac{4+3}{12}+\frac{2}{12}\right)
Tā te mea he rite te tauraro o \frac{4}{12} me \frac{3}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
1-\left(\frac{7}{12}+\frac{2}{12}\right)
Tāpirihia te 4 ki te 3, ka 7.
1-\frac{7+2}{12}
Tā te mea he rite te tauraro o \frac{7}{12} me \frac{2}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
1-\frac{9}{12}
Tāpirihia te 7 ki te 2, ka 9.
1-\frac{3}{4}
Whakahekea te hautanga \frac{9}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{4}{4}-\frac{3}{4}
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{4-3}{4}
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{3}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{4}
Tangohia te 3 i te 4, ka 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}