Aromātai
\frac{1}{3}\approx 0.333333333
Tauwehe
\frac{1}{3} = 0.3333333333333333
Tohaina
Kua tāruatia ki te papatopenga
1-\sqrt{\frac{1}{3}\times \frac{5}{2}-\frac{7}{18}}
Whakawehe \frac{1}{3} ki te \frac{2}{5} mā te whakarea \frac{1}{3} ki te tau huripoki o \frac{2}{5}.
1-\sqrt{\frac{1\times 5}{3\times 2}-\frac{7}{18}}
Me whakarea te \frac{1}{3} ki te \frac{5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
1-\sqrt{\frac{5}{6}-\frac{7}{18}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 5}{3\times 2}.
1-\sqrt{\frac{15}{18}-\frac{7}{18}}
Ko te maha noa iti rawa atu o 6 me 18 ko 18. Me tahuri \frac{5}{6} me \frac{7}{18} ki te hautau me te tautūnga 18.
1-\sqrt{\frac{15-7}{18}}
Tā te mea he rite te tauraro o \frac{15}{18} me \frac{7}{18}, me tango rāua mā te tango i ō raua taurunga.
1-\sqrt{\frac{8}{18}}
Tangohia te 7 i te 15, ka 8.
1-\sqrt{\frac{4}{9}}
Whakahekea te hautanga \frac{8}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
1-\frac{2}{3}
Tuhia anō te pūtake rua o te whakawehenga \frac{4}{9} hei whakawehenga o ngā pūtake rua \frac{\sqrt{4}}{\sqrt{9}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{3}{3}-\frac{2}{3}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{3-2}{3}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{2}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{3}
Tangohia te 2 i te 3, ka 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}