Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Tauwehea te x^{2}-y^{2}.
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}
Tā te mea he rite te tauraro o \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} me \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}
Mahia ngā whakarea i roto o \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}
Whakakotahitia ngā kupu rite i x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}.
\frac{xy}{x^{2}-y^{2}}
Whakarohaina te \left(x+y\right)\left(x-y\right).
1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Tauwehea te x^{2}-y^{2}.
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}
Tā te mea he rite te tauraro o \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} me \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}
Mahia ngā whakarea i roto o \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}
Whakakotahitia ngā kupu rite i x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}.
\frac{xy}{x^{2}-y^{2}}
Whakarohaina te \left(x+y\right)\left(x-y\right).