Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-2\right)\left(x+2\right)-\left(x+2\right)\times 5=x+2
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x^{2}-4.
x^{2}-4-\left(x+2\right)\times 5=x+2
Whakaarohia te \left(x-2\right)\left(x+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
x^{2}-4-\left(5x+10\right)=x+2
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 5.
x^{2}-4-5x-10=x+2
Hei kimi i te tauaro o 5x+10, kimihia te tauaro o ia taurangi.
x^{2}-14-5x=x+2
Tangohia te 10 i te -4, ka -14.
x^{2}-14-5x-x=2
Tangohia te x mai i ngā taha e rua.
x^{2}-14-6x=2
Pahekotia te -5x me -x, ka -6x.
x^{2}-14-6x-2=0
Tangohia te 2 mai i ngā taha e rua.
x^{2}-16-6x=0
Tangohia te 2 i te -14, ka -16.
x^{2}-6x-16=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-6 ab=-16
Hei whakaoti i te whārite, whakatauwehea te x^{2}-6x-16 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-16 2,-8 4,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -16.
1-16=-15 2-8=-6 4-4=0
Tātaihia te tapeke mō ia takirua.
a=-8 b=2
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(x-8\right)\left(x+2\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=8 x=-2
Hei kimi otinga whārite, me whakaoti te x-8=0 me te x+2=0.
x=8
Tē taea kia ōrite te tāupe x ki -2.
\left(x-2\right)\left(x+2\right)-\left(x+2\right)\times 5=x+2
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x^{2}-4.
x^{2}-4-\left(x+2\right)\times 5=x+2
Whakaarohia te \left(x-2\right)\left(x+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
x^{2}-4-\left(5x+10\right)=x+2
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 5.
x^{2}-4-5x-10=x+2
Hei kimi i te tauaro o 5x+10, kimihia te tauaro o ia taurangi.
x^{2}-14-5x=x+2
Tangohia te 10 i te -4, ka -14.
x^{2}-14-5x-x=2
Tangohia te x mai i ngā taha e rua.
x^{2}-14-6x=2
Pahekotia te -5x me -x, ka -6x.
x^{2}-14-6x-2=0
Tangohia te 2 mai i ngā taha e rua.
x^{2}-16-6x=0
Tangohia te 2 i te -14, ka -16.
x^{2}-6x-16=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-6 ab=1\left(-16\right)=-16
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-16. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-16 2,-8 4,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -16.
1-16=-15 2-8=-6 4-4=0
Tātaihia te tapeke mō ia takirua.
a=-8 b=2
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(x^{2}-8x\right)+\left(2x-16\right)
Tuhia anō te x^{2}-6x-16 hei \left(x^{2}-8x\right)+\left(2x-16\right).
x\left(x-8\right)+2\left(x-8\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-8\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi x-8 mā te whakamahi i te āhuatanga tātai tohatoha.
x=8 x=-2
Hei kimi otinga whārite, me whakaoti te x-8=0 me te x+2=0.
x=8
Tē taea kia ōrite te tāupe x ki -2.
\left(x-2\right)\left(x+2\right)-\left(x+2\right)\times 5=x+2
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x^{2}-4.
x^{2}-4-\left(x+2\right)\times 5=x+2
Whakaarohia te \left(x-2\right)\left(x+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
x^{2}-4-\left(5x+10\right)=x+2
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 5.
x^{2}-4-5x-10=x+2
Hei kimi i te tauaro o 5x+10, kimihia te tauaro o ia taurangi.
x^{2}-14-5x=x+2
Tangohia te 10 i te -4, ka -14.
x^{2}-14-5x-x=2
Tangohia te x mai i ngā taha e rua.
x^{2}-14-6x=2
Pahekotia te -5x me -x, ka -6x.
x^{2}-14-6x-2=0
Tangohia te 2 mai i ngā taha e rua.
x^{2}-16-6x=0
Tangohia te 2 i te -14, ka -16.
x^{2}-6x-16=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-16\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -6 mō b, me -16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-16\right)}}{2}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36+64}}{2}
Whakareatia -4 ki te -16.
x=\frac{-\left(-6\right)±\sqrt{100}}{2}
Tāpiri 36 ki te 64.
x=\frac{-\left(-6\right)±10}{2}
Tuhia te pūtakerua o te 100.
x=\frac{6±10}{2}
Ko te tauaro o -6 ko 6.
x=\frac{16}{2}
Nā, me whakaoti te whārite x=\frac{6±10}{2} ina he tāpiri te ±. Tāpiri 6 ki te 10.
x=8
Whakawehe 16 ki te 2.
x=-\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{6±10}{2} ina he tango te ±. Tango 10 mai i 6.
x=-2
Whakawehe -4 ki te 2.
x=8 x=-2
Kua oti te whārite te whakatau.
x=8
Tē taea kia ōrite te tāupe x ki -2.
\left(x-2\right)\left(x+2\right)-\left(x+2\right)\times 5=x+2
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x^{2}-4.
x^{2}-4-\left(x+2\right)\times 5=x+2
Whakaarohia te \left(x-2\right)\left(x+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
x^{2}-4-\left(5x+10\right)=x+2
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 5.
x^{2}-4-5x-10=x+2
Hei kimi i te tauaro o 5x+10, kimihia te tauaro o ia taurangi.
x^{2}-14-5x=x+2
Tangohia te 10 i te -4, ka -14.
x^{2}-14-5x-x=2
Tangohia te x mai i ngā taha e rua.
x^{2}-14-6x=2
Pahekotia te -5x me -x, ka -6x.
x^{2}-6x=2+14
Me tāpiri te 14 ki ngā taha e rua.
x^{2}-6x=16
Tāpirihia te 2 ki te 14, ka 16.
x^{2}-6x+\left(-3\right)^{2}=16+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=16+9
Pūrua -3.
x^{2}-6x+9=25
Tāpiri 16 ki te 9.
\left(x-3\right)^{2}=25
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=5 x-3=-5
Whakarūnātia.
x=8 x=-2
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=8
Tē taea kia ōrite te tāupe x ki -2.