Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{n+3}{n+3}-\frac{3-n}{n+3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{n+3}{n+3}.
\frac{n+3-\left(3-n\right)}{n+3}
Tā te mea he rite te tauraro o \frac{n+3}{n+3} me \frac{3-n}{n+3}, me tango rāua mā te tango i ō raua taurunga.
\frac{n+3-3+n}{n+3}
Mahia ngā whakarea i roto o n+3-\left(3-n\right).
\frac{2n}{n+3}
Whakakotahitia ngā kupu rite i n+3-3+n.
\frac{n+3}{n+3}-\frac{3-n}{n+3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{n+3}{n+3}.
\frac{n+3-\left(3-n\right)}{n+3}
Tā te mea he rite te tauraro o \frac{n+3}{n+3} me \frac{3-n}{n+3}, me tango rāua mā te tango i ō raua taurunga.
\frac{n+3-3+n}{n+3}
Mahia ngā whakarea i roto o n+3-\left(3-n\right).
\frac{2n}{n+3}
Whakakotahitia ngā kupu rite i n+3-3+n.