Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{5}-\frac{3}{5}=\frac{14}{15}-\frac{4}{15}\text{ and }\frac{14}{15}-\frac{4}{15}=\frac{10}{15}
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{5-3}{5}=\frac{14}{15}-\frac{4}{15}\text{ and }\frac{14}{15}-\frac{4}{15}=\frac{10}{15}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{3}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{5}=\frac{14}{15}-\frac{4}{15}\text{ and }\frac{14}{15}-\frac{4}{15}=\frac{10}{15}
Tangohia te 3 i te 5, ka 2.
\frac{2}{5}=\frac{14-4}{15}\text{ and }\frac{14}{15}-\frac{4}{15}=\frac{10}{15}
Tā te mea he rite te tauraro o \frac{14}{15} me \frac{4}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{5}=\frac{10}{15}\text{ and }\frac{14}{15}-\frac{4}{15}=\frac{10}{15}
Tangohia te 4 i te 14, ka 10.
\frac{2}{5}=\frac{2}{3}\text{ and }\frac{14}{15}-\frac{4}{15}=\frac{10}{15}
Whakahekea te hautanga \frac{10}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{6}{15}=\frac{10}{15}\text{ and }\frac{14}{15}-\frac{4}{15}=\frac{10}{15}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{2}{5} me \frac{2}{3} ki te hautau me te tautūnga 15.
\text{false}\text{ and }\frac{14}{15}-\frac{4}{15}=\frac{10}{15}
Whakatauritea te \frac{6}{15} me te \frac{10}{15}.
\text{false}\text{ and }\frac{14-4}{15}=\frac{10}{15}
Tā te mea he rite te tauraro o \frac{14}{15} me \frac{4}{15}, me tango rāua mā te tango i ō raua taurunga.
\text{false}\text{ and }\frac{10}{15}=\frac{10}{15}
Tangohia te 4 i te 14, ka 10.
\text{false}\text{ and }\frac{2}{3}=\frac{10}{15}
Whakahekea te hautanga \frac{10}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\text{false}\text{ and }\frac{2}{3}=\frac{2}{3}
Whakahekea te hautanga \frac{10}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\text{false}\text{ and }\text{true}
Whakatauritea te \frac{2}{3} me te \frac{2}{3}.
\text{false}
Ko te kōmititanga tōrunga o \text{false} me \text{true} ko \text{false}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}