Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
30-6\times 2x+3\left(2+x\right)=2\left(x-4\right)
Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 5,10,15.
30-12x+3\left(2+x\right)=2\left(x-4\right)
Whakareatia te -6 ki te 2, ka -12.
30-12x+6+3x=2\left(x-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2+x.
36-12x+3x=2\left(x-4\right)
Tāpirihia te 30 ki te 6, ka 36.
36-9x=2\left(x-4\right)
Pahekotia te -12x me 3x, ka -9x.
36-9x=2x-8
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-4.
36-9x-2x=-8
Tangohia te 2x mai i ngā taha e rua.
36-11x=-8
Pahekotia te -9x me -2x, ka -11x.
-11x=-8-36
Tangohia te 36 mai i ngā taha e rua.
-11x=-44
Tangohia te 36 i te -8, ka -44.
x=\frac{-44}{-11}
Whakawehea ngā taha e rua ki te -11.
x=4
Whakawehea te -44 ki te -11, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}