Whakaoti mō x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-1\right)\left(x+1\right)-\left(x-1\right)\times 2-4=-\left(1+x\right)x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x^{2}-1,1-x.
x^{2}-1-\left(x-1\right)\times 2-4=-\left(1+x\right)x
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
x^{2}-1-\left(2x-2\right)-4=-\left(1+x\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 2.
x^{2}-1-2x+2-4=-\left(1+x\right)x
Hei kimi i te tauaro o 2x-2, kimihia te tauaro o ia taurangi.
x^{2}+1-2x-4=-\left(1+x\right)x
Tāpirihia te -1 ki te 2, ka 1.
x^{2}-3-2x=-\left(1+x\right)x
Tangohia te 4 i te 1, ka -3.
x^{2}-3-2x=\left(-1-x\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te -1 ki te 1+x.
x^{2}-3-2x=-x-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -1-x ki te x.
x^{2}-3-2x+x=-x^{2}
Me tāpiri te x ki ngā taha e rua.
x^{2}-3-x=-x^{2}
Pahekotia te -2x me x, ka -x.
x^{2}-3-x+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
2x^{2}-3-x=0
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-x-3=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-1 ab=2\left(-3\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=-3 b=2
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(2x^{2}-3x\right)+\left(2x-3\right)
Tuhia anō te 2x^{2}-x-3 hei \left(2x^{2}-3x\right)+\left(2x-3\right).
x\left(2x-3\right)+2x-3
Whakatauwehea atu x i te 2x^{2}-3x.
\left(2x-3\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi 2x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{3}{2} x=-1
Hei kimi otinga whārite, me whakaoti te 2x-3=0 me te x+1=0.
x=\frac{3}{2}
Tē taea kia ōrite te tāupe x ki -1.
\left(x-1\right)\left(x+1\right)-\left(x-1\right)\times 2-4=-\left(1+x\right)x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x^{2}-1,1-x.
x^{2}-1-\left(x-1\right)\times 2-4=-\left(1+x\right)x
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
x^{2}-1-\left(2x-2\right)-4=-\left(1+x\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 2.
x^{2}-1-2x+2-4=-\left(1+x\right)x
Hei kimi i te tauaro o 2x-2, kimihia te tauaro o ia taurangi.
x^{2}+1-2x-4=-\left(1+x\right)x
Tāpirihia te -1 ki te 2, ka 1.
x^{2}-3-2x=-\left(1+x\right)x
Tangohia te 4 i te 1, ka -3.
x^{2}-3-2x=\left(-1-x\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te -1 ki te 1+x.
x^{2}-3-2x=-x-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -1-x ki te x.
x^{2}-3-2x+x=-x^{2}
Me tāpiri te x ki ngā taha e rua.
x^{2}-3-x=-x^{2}
Pahekotia te -2x me x, ka -x.
x^{2}-3-x+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
2x^{2}-3-x=0
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-x-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-3\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -1 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-3\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 2}
Whakareatia -8 ki te -3.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 2}
Tāpiri 1 ki te 24.
x=\frac{-\left(-1\right)±5}{2\times 2}
Tuhia te pūtakerua o te 25.
x=\frac{1±5}{2\times 2}
Ko te tauaro o -1 ko 1.
x=\frac{1±5}{4}
Whakareatia 2 ki te 2.
x=\frac{6}{4}
Nā, me whakaoti te whārite x=\frac{1±5}{4} ina he tāpiri te ±. Tāpiri 1 ki te 5.
x=\frac{3}{2}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{4}{4}
Nā, me whakaoti te whārite x=\frac{1±5}{4} ina he tango te ±. Tango 5 mai i 1.
x=-1
Whakawehe -4 ki te 4.
x=\frac{3}{2} x=-1
Kua oti te whārite te whakatau.
x=\frac{3}{2}
Tē taea kia ōrite te tāupe x ki -1.
\left(x-1\right)\left(x+1\right)-\left(x-1\right)\times 2-4=-\left(1+x\right)x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x^{2}-1,1-x.
x^{2}-1-\left(x-1\right)\times 2-4=-\left(1+x\right)x
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
x^{2}-1-\left(2x-2\right)-4=-\left(1+x\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 2.
x^{2}-1-2x+2-4=-\left(1+x\right)x
Hei kimi i te tauaro o 2x-2, kimihia te tauaro o ia taurangi.
x^{2}+1-2x-4=-\left(1+x\right)x
Tāpirihia te -1 ki te 2, ka 1.
x^{2}-3-2x=-\left(1+x\right)x
Tangohia te 4 i te 1, ka -3.
x^{2}-3-2x=\left(-1-x\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te -1 ki te 1+x.
x^{2}-3-2x=-x-x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -1-x ki te x.
x^{2}-3-2x+x=-x^{2}
Me tāpiri te x ki ngā taha e rua.
x^{2}-3-x=-x^{2}
Pahekotia te -2x me x, ka -x.
x^{2}-3-x+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
2x^{2}-3-x=0
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-x=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{2x^{2}-x}{2}=\frac{3}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{1}{2}x=\frac{3}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{3}{2}+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{25}{16}
Tāpiri \frac{3}{2} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{4}\right)^{2}=\frac{25}{16}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{5}{4} x-\frac{1}{4}=-\frac{5}{4}
Whakarūnātia.
x=\frac{3}{2} x=-1
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
x=\frac{3}{2}
Tē taea kia ōrite te tāupe x ki -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}