Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(1+y\right)\left(1-y\right)}{1-y}-\frac{1-2y^{2}}{1-y}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1+y ki te \frac{1-y}{1-y}.
\frac{\left(1+y\right)\left(1-y\right)-\left(1-2y^{2}\right)}{1-y}
Tā te mea he rite te tauraro o \frac{\left(1+y\right)\left(1-y\right)}{1-y} me \frac{1-2y^{2}}{1-y}, me tango rāua mā te tango i ō raua taurunga.
\frac{1-y+y-y^{2}-1+2y^{2}}{1-y}
Mahia ngā whakarea i roto o \left(1+y\right)\left(1-y\right)-\left(1-2y^{2}\right).
\frac{y^{2}}{1-y}
Whakakotahitia ngā kupu rite i 1-y+y-y^{2}-1+2y^{2}.
\frac{\left(1+y\right)\left(1-y\right)}{1-y}-\frac{1-2y^{2}}{1-y}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1+y ki te \frac{1-y}{1-y}.
\frac{\left(1+y\right)\left(1-y\right)-\left(1-2y^{2}\right)}{1-y}
Tā te mea he rite te tauraro o \frac{\left(1+y\right)\left(1-y\right)}{1-y} me \frac{1-2y^{2}}{1-y}, me tango rāua mā te tango i ō raua taurunga.
\frac{1-y+y-y^{2}-1+2y^{2}}{1-y}
Mahia ngā whakarea i roto o \left(1+y\right)\left(1-y\right)-\left(1-2y^{2}\right).
\frac{y^{2}}{1-y}
Whakakotahitia ngā kupu rite i 1-y+y-y^{2}-1+2y^{2}.