Whakaoti mō z
z=13
Tohaina
Kua tāruatia ki te papatopenga
1-\frac{1}{6}\times 2z-\frac{1}{6}\left(-5\right)=\frac{1}{4}\left(3-z\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{6} ki te 2z-5.
1+\frac{-2}{6}z-\frac{1}{6}\left(-5\right)=\frac{1}{4}\left(3-z\right)
Tuhia te -\frac{1}{6}\times 2 hei hautanga kotahi.
1-\frac{1}{3}z-\frac{1}{6}\left(-5\right)=\frac{1}{4}\left(3-z\right)
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
1-\frac{1}{3}z+\frac{-\left(-5\right)}{6}=\frac{1}{4}\left(3-z\right)
Tuhia te -\frac{1}{6}\left(-5\right) hei hautanga kotahi.
1-\frac{1}{3}z+\frac{5}{6}=\frac{1}{4}\left(3-z\right)
Whakareatia te -1 ki te -5, ka 5.
\frac{6}{6}-\frac{1}{3}z+\frac{5}{6}=\frac{1}{4}\left(3-z\right)
Me tahuri te 1 ki te hautau \frac{6}{6}.
\frac{6+5}{6}-\frac{1}{3}z=\frac{1}{4}\left(3-z\right)
Tā te mea he rite te tauraro o \frac{6}{6} me \frac{5}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{11}{6}-\frac{1}{3}z=\frac{1}{4}\left(3-z\right)
Tāpirihia te 6 ki te 5, ka 11.
\frac{11}{6}-\frac{1}{3}z=\frac{1}{4}\times 3+\frac{1}{4}\left(-1\right)z
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{4} ki te 3-z.
\frac{11}{6}-\frac{1}{3}z=\frac{3}{4}+\frac{1}{4}\left(-1\right)z
Whakareatia te \frac{1}{4} ki te 3, ka \frac{3}{4}.
\frac{11}{6}-\frac{1}{3}z=\frac{3}{4}-\frac{1}{4}z
Whakareatia te \frac{1}{4} ki te -1, ka -\frac{1}{4}.
\frac{11}{6}-\frac{1}{3}z+\frac{1}{4}z=\frac{3}{4}
Me tāpiri te \frac{1}{4}z ki ngā taha e rua.
\frac{11}{6}-\frac{1}{12}z=\frac{3}{4}
Pahekotia te -\frac{1}{3}z me \frac{1}{4}z, ka -\frac{1}{12}z.
-\frac{1}{12}z=\frac{3}{4}-\frac{11}{6}
Tangohia te \frac{11}{6} mai i ngā taha e rua.
-\frac{1}{12}z=\frac{9}{12}-\frac{22}{12}
Ko te maha noa iti rawa atu o 4 me 6 ko 12. Me tahuri \frac{3}{4} me \frac{11}{6} ki te hautau me te tautūnga 12.
-\frac{1}{12}z=\frac{9-22}{12}
Tā te mea he rite te tauraro o \frac{9}{12} me \frac{22}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{12}z=-\frac{13}{12}
Tangohia te 22 i te 9, ka -13.
z=-\frac{13}{12}\left(-12\right)
Me whakarea ngā taha e rua ki te -12, te tau utu o -\frac{1}{12}.
z=\frac{-13\left(-12\right)}{12}
Tuhia te -\frac{13}{12}\left(-12\right) hei hautanga kotahi.
z=\frac{156}{12}
Whakareatia te -13 ki te -12, ka 156.
z=13
Whakawehea te 156 ki te 12, kia riro ko 13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}