Aromātai
\frac{13}{12}\approx 1.083333333
Tauwehe
\frac{13}{2 ^ {2} \cdot 3} = 1\frac{1}{12} = 1.0833333333333333
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
1 - \frac { 1 } { 3 } + \frac { 1 } { 4 } + \frac { 1 } { 6 } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{3}-\frac{1}{3}+\frac{1}{4}+\frac{1}{6}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{3-1}{3}+\frac{1}{4}+\frac{1}{6}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{1}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{3}+\frac{1}{4}+\frac{1}{6}
Tangohia te 1 i te 3, ka 2.
\frac{8}{12}+\frac{3}{12}+\frac{1}{6}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{2}{3} me \frac{1}{4} ki te hautau me te tautūnga 12.
\frac{8+3}{12}+\frac{1}{6}
Tā te mea he rite te tauraro o \frac{8}{12} me \frac{3}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{11}{12}+\frac{1}{6}
Tāpirihia te 8 ki te 3, ka 11.
\frac{11}{12}+\frac{2}{12}
Ko te maha noa iti rawa atu o 12 me 6 ko 12. Me tahuri \frac{11}{12} me \frac{1}{6} ki te hautau me te tautūnga 12.
\frac{11+2}{12}
Tā te mea he rite te tauraro o \frac{11}{12} me \frac{2}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13}{12}
Tāpirihia te 11 ki te 2, ka 13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}