Aromātai
\frac{181}{168}\approx 1.077380952
Tauwehe
\frac{181}{2 ^ {3} \cdot 3 \cdot 7} = 1\frac{13}{168} = 1.0773809523809523
Tohaina
Kua tāruatia ki te papatopenga
\frac{21}{21}-\frac{1}{21}+\frac{1}{2}\times \frac{1}{2^{2}}
Me tahuri te 1 ki te hautau \frac{21}{21}.
\frac{21-1}{21}+\frac{1}{2}\times \frac{1}{2^{2}}
Tā te mea he rite te tauraro o \frac{21}{21} me \frac{1}{21}, me tango rāua mā te tango i ō raua taurunga.
\frac{20}{21}+\frac{1}{2}\times \frac{1}{2^{2}}
Tangohia te 1 i te 21, ka 20.
\frac{20}{21}+\frac{1}{2}\times \frac{1}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{20}{21}+\frac{1\times 1}{2\times 4}
Me whakarea te \frac{1}{2} ki te \frac{1}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{20}{21}+\frac{1}{8}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{2\times 4}.
\frac{160}{168}+\frac{21}{168}
Ko te maha noa iti rawa atu o 21 me 8 ko 168. Me tahuri \frac{20}{21} me \frac{1}{8} ki te hautau me te tautūnga 168.
\frac{160+21}{168}
Tā te mea he rite te tauraro o \frac{160}{168} me \frac{21}{168}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{181}{168}
Tāpirihia te 160 ki te 21, ka 181.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}