Aromātai
-\frac{2}{x-1}
Whakaroha
-\frac{2}{x-1}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
1 - \frac { 1 + \frac { 1 } { x } } { 1 - \frac { 1 } { x } }
Tohaina
Kua tāruatia ki te papatopenga
1-\frac{\frac{x}{x}+\frac{1}{x}}{1-\frac{1}{x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
1-\frac{\frac{x+1}{x}}{1-\frac{1}{x}}
Tā te mea he rite te tauraro o \frac{x}{x} me \frac{1}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
1-\frac{\frac{x+1}{x}}{\frac{x}{x}-\frac{1}{x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
1-\frac{\frac{x+1}{x}}{\frac{x-1}{x}}
Tā te mea he rite te tauraro o \frac{x}{x} me \frac{1}{x}, me tango rāua mā te tango i ō raua taurunga.
1-\frac{\left(x+1\right)x}{x\left(x-1\right)}
Whakawehe \frac{x+1}{x} ki te \frac{x-1}{x} mā te whakarea \frac{x+1}{x} ki te tau huripoki o \frac{x-1}{x}.
1-\frac{x+1}{x-1}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{x-1}{x-1}-\frac{x+1}{x-1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x-1}{x-1}.
\frac{x-1-\left(x+1\right)}{x-1}
Tā te mea he rite te tauraro o \frac{x-1}{x-1} me \frac{x+1}{x-1}, me tango rāua mā te tango i ō raua taurunga.
\frac{x-1-x-1}{x-1}
Mahia ngā whakarea i roto o x-1-\left(x+1\right).
\frac{-2}{x-1}
Whakakotahitia ngā kupu rite i x-1-x-1.
1-\frac{\frac{x}{x}+\frac{1}{x}}{1-\frac{1}{x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
1-\frac{\frac{x+1}{x}}{1-\frac{1}{x}}
Tā te mea he rite te tauraro o \frac{x}{x} me \frac{1}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
1-\frac{\frac{x+1}{x}}{\frac{x}{x}-\frac{1}{x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
1-\frac{\frac{x+1}{x}}{\frac{x-1}{x}}
Tā te mea he rite te tauraro o \frac{x}{x} me \frac{1}{x}, me tango rāua mā te tango i ō raua taurunga.
1-\frac{\left(x+1\right)x}{x\left(x-1\right)}
Whakawehe \frac{x+1}{x} ki te \frac{x-1}{x} mā te whakarea \frac{x+1}{x} ki te tau huripoki o \frac{x-1}{x}.
1-\frac{x+1}{x-1}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{x-1}{x-1}-\frac{x+1}{x-1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x-1}{x-1}.
\frac{x-1-\left(x+1\right)}{x-1}
Tā te mea he rite te tauraro o \frac{x-1}{x-1} me \frac{x+1}{x-1}, me tango rāua mā te tango i ō raua taurunga.
\frac{x-1-x-1}{x-1}
Mahia ngā whakarea i roto o x-1-\left(x+1\right).
\frac{-2}{x-1}
Whakakotahitia ngā kupu rite i x-1-x-1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}