Aromātai
\frac{37}{6}\approx 6.166666667
Tauwehe
\frac{37}{2 \cdot 3} = 6\frac{1}{6} = 6.166666666666667
Tohaina
Kua tāruatia ki te papatopenga
1-\frac{-31}{6}
Tangohia te 5 i te -26, ka -31.
1-\left(-\frac{31}{6}\right)
Ka taea te hautanga \frac{-31}{6} te tuhi anō ko -\frac{31}{6} mā te tango i te tohu tōraro.
1+\frac{31}{6}
Ko te tauaro o -\frac{31}{6} ko \frac{31}{6}.
\frac{6}{6}+\frac{31}{6}
Me tahuri te 1 ki te hautau \frac{6}{6}.
\frac{6+31}{6}
Tā te mea he rite te tauraro o \frac{6}{6} me \frac{31}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{37}{6}
Tāpirihia te 6 ki te 31, ka 37.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}