Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1-\cos(0x)=\sqrt{2}\sin(0\times 2x)
Whakareatia te 0 ki te 4, ka 0.
1-\cos(0)=\sqrt{2}\sin(0\times 2x)
Ko te tau i whakarea ki te kore ka hua ko te kore.
1-1=\sqrt{2}\sin(0\times 2x)
Tīkina te uara \cos(0) mai i te ripanga uara pākoki.
0=\sqrt{2}\sin(0\times 2x)
Tangohia te 1 i te 1, ka 0.
0=\sqrt{2}\sin(0x)
Whakareatia te 0 ki te 2, ka 0.
0=\sqrt{2}\sin(0)
Ko te tau i whakarea ki te kore ka hua ko te kore.
0=\sqrt{2}\times 0
Tīkina te uara \sin(0) mai i te ripanga uara pākoki.
0=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
\text{true}
Whakatauritea te 0 me te 0.
x\in \mathrm{C}
He pono tēnei mō tētahi x ahakoa.
1-\cos(0x)=\sqrt{2}\sin(0\times 2x)
Whakareatia te 0 ki te 4, ka 0.
1-\cos(0)=\sqrt{2}\sin(0\times 2x)
Ko te tau i whakarea ki te kore ka hua ko te kore.
1-1=\sqrt{2}\sin(0\times 2x)
Tīkina te uara \cos(0) mai i te ripanga uara pākoki.
0=\sqrt{2}\sin(0\times 2x)
Tangohia te 1 i te 1, ka 0.
0=\sqrt{2}\sin(0x)
Whakareatia te 0 ki te 2, ka 0.
0=\sqrt{2}\sin(0)
Ko te tau i whakarea ki te kore ka hua ko te kore.
0=\sqrt{2}\times 0
Tīkina te uara \sin(0) mai i te ripanga uara pākoki.
0=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
\text{true}
Whakatauritea te 0 me te 0.
x\in \mathrm{R}
He pono tēnei mō tētahi x ahakoa.