Aromātai
0.65
Tauwehe
\frac{13}{5 \cdot 2 ^ {2}} = 0.65
Pātaitai
Arithmetic
1 - \{ 0.4 \times ( 1 \frac { 1 } { 3 } + 0.75 ) - 0.25 \} \div 1 \frac { 2 } { 3 }
Tohaina
Kua tāruatia ki te papatopenga
1-\frac{0.4\left(\frac{3+1}{3}+0.75\right)-0.25}{\frac{1\times 3+2}{3}}
Whakareatia te 1 ki te 3, ka 3.
1-\frac{0.4\left(\frac{4}{3}+0.75\right)-0.25}{\frac{1\times 3+2}{3}}
Tāpirihia te 3 ki te 1, ka 4.
1-\frac{0.4\left(\frac{4}{3}+\frac{3}{4}\right)-0.25}{\frac{1\times 3+2}{3}}
Me tahuri ki tau ā-ira 0.75 ki te hautau \frac{75}{100}. Whakahekea te hautanga \frac{75}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
1-\frac{0.4\left(\frac{16}{12}+\frac{9}{12}\right)-0.25}{\frac{1\times 3+2}{3}}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{4}{3} me \frac{3}{4} ki te hautau me te tautūnga 12.
1-\frac{0.4\times \frac{16+9}{12}-0.25}{\frac{1\times 3+2}{3}}
Tā te mea he rite te tauraro o \frac{16}{12} me \frac{9}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
1-\frac{0.4\times \frac{25}{12}-0.25}{\frac{1\times 3+2}{3}}
Tāpirihia te 16 ki te 9, ka 25.
1-\frac{\frac{2}{5}\times \frac{25}{12}-0.25}{\frac{1\times 3+2}{3}}
Me tahuri ki tau ā-ira 0.4 ki te hautau \frac{4}{10}. Whakahekea te hautanga \frac{4}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
1-\frac{\frac{2\times 25}{5\times 12}-0.25}{\frac{1\times 3+2}{3}}
Me whakarea te \frac{2}{5} ki te \frac{25}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
1-\frac{\frac{50}{60}-0.25}{\frac{1\times 3+2}{3}}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 25}{5\times 12}.
1-\frac{\frac{5}{6}-0.25}{\frac{1\times 3+2}{3}}
Whakahekea te hautanga \frac{50}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
1-\frac{\frac{5}{6}-\frac{1}{4}}{\frac{1\times 3+2}{3}}
Me tahuri ki tau ā-ira 0.25 ki te hautau \frac{25}{100}. Whakahekea te hautanga \frac{25}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
1-\frac{\frac{10}{12}-\frac{3}{12}}{\frac{1\times 3+2}{3}}
Ko te maha noa iti rawa atu o 6 me 4 ko 12. Me tahuri \frac{5}{6} me \frac{1}{4} ki te hautau me te tautūnga 12.
1-\frac{\frac{10-3}{12}}{\frac{1\times 3+2}{3}}
Tā te mea he rite te tauraro o \frac{10}{12} me \frac{3}{12}, me tango rāua mā te tango i ō raua taurunga.
1-\frac{\frac{7}{12}}{\frac{1\times 3+2}{3}}
Tangohia te 3 i te 10, ka 7.
1-\frac{\frac{7}{12}}{\frac{3+2}{3}}
Whakareatia te 1 ki te 3, ka 3.
1-\frac{\frac{7}{12}}{\frac{5}{3}}
Tāpirihia te 3 ki te 2, ka 5.
1-\frac{7}{12}\times \frac{3}{5}
Whakawehe \frac{7}{12} ki te \frac{5}{3} mā te whakarea \frac{7}{12} ki te tau huripoki o \frac{5}{3}.
1-\frac{7\times 3}{12\times 5}
Me whakarea te \frac{7}{12} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
1-\frac{21}{60}
Mahia ngā whakarea i roto i te hautanga \frac{7\times 3}{12\times 5}.
1-\frac{7}{20}
Whakahekea te hautanga \frac{21}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{20}{20}-\frac{7}{20}
Me tahuri te 1 ki te hautau \frac{20}{20}.
\frac{20-7}{20}
Tā te mea he rite te tauraro o \frac{20}{20} me \frac{7}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{13}{20}
Tangohia te 7 i te 20, ka 13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}