Whakaoti mō x
x = \frac{10000}{67} = 149\frac{17}{67} \approx 149.253731343
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(1x\right)^{2}=\left(10\sqrt{300x-2x^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
1^{2}x^{2}=\left(10\sqrt{300x-2x^{2}}\right)^{2}
Whakarohaina te \left(1x\right)^{2}.
1x^{2}=\left(10\sqrt{300x-2x^{2}}\right)^{2}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
1x^{2}=10^{2}\left(\sqrt{300x-2x^{2}}\right)^{2}
Whakarohaina te \left(10\sqrt{300x-2x^{2}}\right)^{2}.
1x^{2}=100\left(\sqrt{300x-2x^{2}}\right)^{2}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
1x^{2}=100\left(300x-2x^{2}\right)
Tātaihia te \sqrt{300x-2x^{2}} mā te pū o 2, kia riro ko 300x-2x^{2}.
1x^{2}=30000x-200x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 100 ki te 300x-2x^{2}.
x^{2}=-200x^{2}+30000x
Whakaraupapatia anō ngā kīanga tau.
x^{2}+200x^{2}=30000x
Me tāpiri te 200x^{2} ki ngā taha e rua.
201x^{2}=30000x
Pahekotia te x^{2} me 200x^{2}, ka 201x^{2}.
201x^{2}-30000x=0
Tangohia te 30000x mai i ngā taha e rua.
x\left(201x-30000\right)=0
Tauwehea te x.
x=0 x=\frac{10000}{67}
Hei kimi otinga whārite, me whakaoti te x=0 me te 201x-30000=0.
1\times 0=10\sqrt{300\times 0-2\times 0^{2}}
Whakakapia te 0 mō te x i te whārite 1x=10\sqrt{300x-2x^{2}}.
0=0
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
1\times \frac{10000}{67}=10\sqrt{300\times \frac{10000}{67}-2\times \left(\frac{10000}{67}\right)^{2}}
Whakakapia te \frac{10000}{67} mō te x i te whārite 1x=10\sqrt{300x-2x^{2}}.
\frac{10000}{67}=\frac{10000}{67}
Whakarūnātia. Ko te uara x=\frac{10000}{67} kua ngata te whārite.
x=0 x=\frac{10000}{67}
Rārangihia ngā rongoā katoa o x=10\sqrt{300x-2x^{2}}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}