Aromātai
3m-7n-14
Whakaroha
3m-7n-14
Tohaina
Kua tāruatia ki te papatopenga
m+n-2+2\left(m-4n-6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 1 ki te m+n-2.
m+n-2+2m-8n-12
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te m-4n-6.
3m+n-2-8n-12
Pahekotia te m me 2m, ka 3m.
3m-7n-2-12
Pahekotia te n me -8n, ka -7n.
3m-7n-14
Tangohia te 12 i te -2, ka -14.
m+n-2+2\left(m-4n-6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 1 ki te m+n-2.
m+n-2+2m-8n-12
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te m-4n-6.
3m+n-2-8n-12
Pahekotia te m me 2m, ka 3m.
3m-7n-2-12
Pahekotia te n me -8n, ka -7n.
3m-7n-14
Tangohia te 12 i te -2, ka -14.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}