Whakaoti mō x
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
1\left(4x^{2}-20x+25\right)-0\times 9\left(x+4\right)^{2}=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-5\right)^{2}.
4x^{2}-20x+25-0\times 9\left(x+4\right)^{2}=0
Whakamahia te āhuatanga tohatoha hei whakarea te 1 ki te 4x^{2}-20x+25.
4x^{2}-20x+25-0\left(x+4\right)^{2}=0
Whakareatia te 0 ki te 9, ka 0.
4x^{2}-20x+25-0\left(x^{2}+8x+16\right)=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+4\right)^{2}.
4x^{2}-20x+25-0=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
4x^{2}-20x+25=0
Whakaraupapatia anō ngā kīanga tau.
a+b=-20 ab=4\times 25=100
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4x^{2}+ax+bx+25. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 100.
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
Tātaihia te tapeke mō ia takirua.
a=-10 b=-10
Ko te otinga te takirua ka hoatu i te tapeke -20.
\left(4x^{2}-10x\right)+\left(-10x+25\right)
Tuhia anō te 4x^{2}-20x+25 hei \left(4x^{2}-10x\right)+\left(-10x+25\right).
2x\left(2x-5\right)-5\left(2x-5\right)
Tauwehea te 2x i te tuatahi me te -5 i te rōpū tuarua.
\left(2x-5\right)\left(2x-5\right)
Whakatauwehea atu te kīanga pātahi 2x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(2x-5\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=\frac{5}{2}
Hei kimi i te otinga whārite, whakaotia te 2x-5=0.
1\left(4x^{2}-20x+25\right)-0\times 9\left(x+4\right)^{2}=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-5\right)^{2}.
4x^{2}-20x+25-0\times 9\left(x+4\right)^{2}=0
Whakamahia te āhuatanga tohatoha hei whakarea te 1 ki te 4x^{2}-20x+25.
4x^{2}-20x+25-0\left(x+4\right)^{2}=0
Whakareatia te 0 ki te 9, ka 0.
4x^{2}-20x+25-0\left(x^{2}+8x+16\right)=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+4\right)^{2}.
4x^{2}-20x+25-0=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
4x^{2}-20x+25=0
Whakaraupapatia anō ngā kīanga tau.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 4\times 25}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -20 mō b, me 25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 4\times 25}}{2\times 4}
Pūrua -20.
x=\frac{-\left(-20\right)±\sqrt{400-16\times 25}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-20\right)±\sqrt{400-400}}{2\times 4}
Whakareatia -16 ki te 25.
x=\frac{-\left(-20\right)±\sqrt{0}}{2\times 4}
Tāpiri 400 ki te -400.
x=-\frac{-20}{2\times 4}
Tuhia te pūtakerua o te 0.
x=\frac{20}{2\times 4}
Ko te tauaro o -20 ko 20.
x=\frac{20}{8}
Whakareatia 2 ki te 4.
x=\frac{5}{2}
Whakahekea te hautanga \frac{20}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
1\left(4x^{2}-20x+25\right)-0\times 9\left(x+4\right)^{2}=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-5\right)^{2}.
4x^{2}-20x+25-0\times 9\left(x+4\right)^{2}=0
Whakamahia te āhuatanga tohatoha hei whakarea te 1 ki te 4x^{2}-20x+25.
4x^{2}-20x+25-0\left(x+4\right)^{2}=0
Whakareatia te 0 ki te 9, ka 0.
4x^{2}-20x+25-0\left(x^{2}+8x+16\right)=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+4\right)^{2}.
4x^{2}-20x+25-0=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
4x^{2}-20x+25=0+0
Me tāpiri te 0 ki ngā taha e rua.
4x^{2}-20x+25=0
Tāpirihia te 0 ki te 0, ka 0.
4x^{2}-20x=-25
Tangohia te 25 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{4x^{2}-20x}{4}=-\frac{25}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{20}{4}\right)x=-\frac{25}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-5x=-\frac{25}{4}
Whakawehe -20 ki te 4.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-\frac{25}{4}+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-5x+\frac{25}{4}=\frac{-25+25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-5x+\frac{25}{4}=0
Tāpiri -\frac{25}{4} ki te \frac{25}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{2}\right)^{2}=0
Tauwehea x^{2}-5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{2}=0 x-\frac{5}{2}=0
Whakarūnātia.
x=\frac{5}{2} x=\frac{5}{2}
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
x=\frac{5}{2}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}