Aromātai
\frac{16}{9}\approx 1.777777778
Tauwehe
\frac{2 ^ {4}}{3 ^ {2}} = 1\frac{7}{9} = 1.7777777777777777
Tohaina
Kua tāruatia ki te papatopenga
\frac{20}{63}+2\times \frac{10}{21}+3\times \frac{10}{63}+4\times \frac{1}{126}
Whakareatia te 1 ki te \frac{20}{63}, ka \frac{20}{63}.
\frac{20}{63}+\frac{2\times 10}{21}+3\times \frac{10}{63}+4\times \frac{1}{126}
Tuhia te 2\times \frac{10}{21} hei hautanga kotahi.
\frac{20}{63}+\frac{20}{21}+3\times \frac{10}{63}+4\times \frac{1}{126}
Whakareatia te 2 ki te 10, ka 20.
\frac{20}{63}+\frac{60}{63}+3\times \frac{10}{63}+4\times \frac{1}{126}
Ko te maha noa iti rawa atu o 63 me 21 ko 63. Me tahuri \frac{20}{63} me \frac{20}{21} ki te hautau me te tautūnga 63.
\frac{20+60}{63}+3\times \frac{10}{63}+4\times \frac{1}{126}
Tā te mea he rite te tauraro o \frac{20}{63} me \frac{60}{63}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{80}{63}+3\times \frac{10}{63}+4\times \frac{1}{126}
Tāpirihia te 20 ki te 60, ka 80.
\frac{80}{63}+\frac{3\times 10}{63}+4\times \frac{1}{126}
Tuhia te 3\times \frac{10}{63} hei hautanga kotahi.
\frac{80}{63}+\frac{30}{63}+4\times \frac{1}{126}
Whakareatia te 3 ki te 10, ka 30.
\frac{80+30}{63}+4\times \frac{1}{126}
Tā te mea he rite te tauraro o \frac{80}{63} me \frac{30}{63}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{110}{63}+4\times \frac{1}{126}
Tāpirihia te 80 ki te 30, ka 110.
\frac{110}{63}+\frac{4}{126}
Whakareatia te 4 ki te \frac{1}{126}, ka \frac{4}{126}.
\frac{110}{63}+\frac{2}{63}
Whakahekea te hautanga \frac{4}{126} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{110+2}{63}
Tā te mea he rite te tauraro o \frac{110}{63} me \frac{2}{63}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{112}{63}
Tāpirihia te 110 ki te 2, ka 112.
\frac{16}{9}
Whakahekea te hautanga \frac{112}{63} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}