Aromātai
-\frac{13}{6}\approx -2.166666667
Tauwehe
-\frac{13}{6} = -2\frac{1}{6} = -2.1666666666666665
Tohaina
Kua tāruatia ki te papatopenga
\frac{3+2}{3}-\frac{3\times 6+5}{6}
Whakareatia te 1 ki te 3, ka 3.
\frac{5}{3}-\frac{3\times 6+5}{6}
Tāpirihia te 3 ki te 2, ka 5.
\frac{5}{3}-\frac{18+5}{6}
Whakareatia te 3 ki te 6, ka 18.
\frac{5}{3}-\frac{23}{6}
Tāpirihia te 18 ki te 5, ka 23.
\frac{10}{6}-\frac{23}{6}
Ko te maha noa iti rawa atu o 3 me 6 ko 6. Me tahuri \frac{5}{3} me \frac{23}{6} ki te hautau me te tautūnga 6.
\frac{10-23}{6}
Tā te mea he rite te tauraro o \frac{10}{6} me \frac{23}{6}, me tango rāua mā te tango i ō raua taurunga.
-\frac{13}{6}
Tangohia te 23 i te 10, ka -13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}