Aromātai
\frac{39}{2}=19.5
Tauwehe
\frac{3 \cdot 13}{2} = 19\frac{1}{2} = 19.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{3+2}{3}-\frac{5\times 13+6}{13}-\frac{3\times 4+1}{4}-\frac{2\times 13+7}{13}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Whakareatia te 1 ki te 3, ka 3.
\frac{5}{3}-\frac{5\times 13+6}{13}-\frac{3\times 4+1}{4}-\frac{2\times 13+7}{13}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Tāpirihia te 3 ki te 2, ka 5.
\frac{5}{3}-\frac{65+6}{13}-\frac{3\times 4+1}{4}-\frac{2\times 13+7}{13}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Whakareatia te 5 ki te 13, ka 65.
\frac{5}{3}-\frac{71}{13}-\frac{3\times 4+1}{4}-\frac{2\times 13+7}{13}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Tāpirihia te 65 ki te 6, ka 71.
\frac{65}{39}-\frac{213}{39}-\frac{3\times 4+1}{4}-\frac{2\times 13+7}{13}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Ko te maha noa iti rawa atu o 3 me 13 ko 39. Me tahuri \frac{5}{3} me \frac{71}{13} ki te hautau me te tautūnga 39.
\frac{65-213}{39}-\frac{3\times 4+1}{4}-\frac{2\times 13+7}{13}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Tā te mea he rite te tauraro o \frac{65}{39} me \frac{213}{39}, me tango rāua mā te tango i ō raua taurunga.
-\frac{148}{39}-\frac{3\times 4+1}{4}-\frac{2\times 13+7}{13}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Tangohia te 213 i te 65, ka -148.
-\frac{148}{39}-\frac{12+1}{4}-\frac{2\times 13+7}{13}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Whakareatia te 3 ki te 4, ka 12.
-\frac{148}{39}-\frac{13}{4}-\frac{2\times 13+7}{13}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Tāpirihia te 12 ki te 1, ka 13.
-\frac{592}{156}-\frac{507}{156}-\frac{2\times 13+7}{13}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Ko te maha noa iti rawa atu o 39 me 4 ko 156. Me tahuri -\frac{148}{39} me \frac{13}{4} ki te hautau me te tautūnga 156.
\frac{-592-507}{156}-\frac{2\times 13+7}{13}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Tā te mea he rite te tauraro o -\frac{592}{156} me \frac{507}{156}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1099}{156}-\frac{2\times 13+7}{13}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Tangohia te 507 i te -592, ka -1099.
-\frac{1099}{156}-\frac{26+7}{13}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Whakareatia te 2 ki te 13, ka 26.
-\frac{1099}{156}-\frac{33}{13}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Tāpirihia te 26 ki te 7, ka 33.
-\frac{1099}{156}-\frac{396}{156}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Ko te maha noa iti rawa atu o 156 me 13 ko 156. Me tahuri -\frac{1099}{156} me \frac{33}{13} ki te hautau me te tautūnga 156.
\frac{-1099-396}{156}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Tā te mea he rite te tauraro o -\frac{1099}{156} me \frac{396}{156}, me tango rāua mā te tango i ō raua taurunga.
\frac{-1495}{156}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Tangohia te 396 i te -1099, ka -1495.
-\frac{115}{12}+\frac{21\times 3+1}{3}+\frac{7\times 4+3}{4}
Whakahekea te hautanga \frac{-1495}{156} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 13.
-\frac{115}{12}+\frac{63+1}{3}+\frac{7\times 4+3}{4}
Whakareatia te 21 ki te 3, ka 63.
-\frac{115}{12}+\frac{64}{3}+\frac{7\times 4+3}{4}
Tāpirihia te 63 ki te 1, ka 64.
-\frac{115}{12}+\frac{256}{12}+\frac{7\times 4+3}{4}
Ko te maha noa iti rawa atu o 12 me 3 ko 12. Me tahuri -\frac{115}{12} me \frac{64}{3} ki te hautau me te tautūnga 12.
\frac{-115+256}{12}+\frac{7\times 4+3}{4}
Tā te mea he rite te tauraro o -\frac{115}{12} me \frac{256}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{141}{12}+\frac{7\times 4+3}{4}
Tāpirihia te -115 ki te 256, ka 141.
\frac{47}{4}+\frac{7\times 4+3}{4}
Whakahekea te hautanga \frac{141}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{47}{4}+\frac{28+3}{4}
Whakareatia te 7 ki te 4, ka 28.
\frac{47}{4}+\frac{31}{4}
Tāpirihia te 28 ki te 3, ka 31.
\frac{47+31}{4}
Tā te mea he rite te tauraro o \frac{47}{4} me \frac{31}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{78}{4}
Tāpirihia te 47 ki te 31, ka 78.
\frac{39}{2}
Whakahekea te hautanga \frac{78}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}