Aromātai
-\frac{49}{12}\approx -4.083333333
Tauwehe
-\frac{49}{12} = -4\frac{1}{12} = -4.083333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{4+1}{4}-\frac{5\times 3+1}{3}
Whakareatia te 1 ki te 4, ka 4.
\frac{5}{4}-\frac{5\times 3+1}{3}
Tāpirihia te 4 ki te 1, ka 5.
\frac{5}{4}-\frac{15+1}{3}
Whakareatia te 5 ki te 3, ka 15.
\frac{5}{4}-\frac{16}{3}
Tāpirihia te 15 ki te 1, ka 16.
\frac{15}{12}-\frac{64}{12}
Ko te maha noa iti rawa atu o 4 me 3 ko 12. Me tahuri \frac{5}{4} me \frac{16}{3} ki te hautau me te tautūnga 12.
\frac{15-64}{12}
Tā te mea he rite te tauraro o \frac{15}{12} me \frac{64}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{49}{12}
Tangohia te 64 i te 15, ka -49.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}