Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(1\times 2+1\right)\left(x-\frac{2}{3}\right)=1.2
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
3\left(2+1\right)\left(x-\frac{2}{3}\right)=1.2
Whakareatia te 1 ki te 2, ka 2.
3\times 3\left(x-\frac{2}{3}\right)=1.2
Tāpirihia te 2 ki te 1, ka 3.
9\left(x-\frac{2}{3}\right)=1.2
Whakareatia te 3 ki te 3, ka 9.
9x+9\left(-\frac{2}{3}\right)=1.2
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te x-\frac{2}{3}.
9x+\frac{9\left(-2\right)}{3}=1.2
Tuhia te 9\left(-\frac{2}{3}\right) hei hautanga kotahi.
9x+\frac{-18}{3}=1.2
Whakareatia te 9 ki te -2, ka -18.
9x-6=1.2
Whakawehea te -18 ki te 3, kia riro ko -6.
9x=1.2+6
Me tāpiri te 6 ki ngā taha e rua.
9x=7.2
Tāpirihia te 1.2 ki te 6, ka 7.2.
x=\frac{7.2}{9}
Whakawehea ngā taha e rua ki te 9.
x=\frac{72}{90}
Whakarohaina te \frac{7.2}{9} mā te whakarea i te taurunga me te tauraro ki te 10.
x=\frac{4}{5}
Whakahekea te hautanga \frac{72}{90} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 18.