Aromātai
\frac{5}{6}\approx 0.833333333
Tauwehe
\frac{5}{2 \cdot 3} = 0.8333333333333334
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
1 \frac{ 1 }{ 14 } -1 \frac{ 1 }{ 14 } \times \frac{ 2 }{ 9 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{14+1}{14}-\frac{1\times 14+1}{14}\times \frac{2}{9}
Whakareatia te 1 ki te 14, ka 14.
\frac{15}{14}-\frac{1\times 14+1}{14}\times \frac{2}{9}
Tāpirihia te 14 ki te 1, ka 15.
\frac{15}{14}-\frac{14+1}{14}\times \frac{2}{9}
Whakareatia te 1 ki te 14, ka 14.
\frac{15}{14}-\frac{15}{14}\times \frac{2}{9}
Tāpirihia te 14 ki te 1, ka 15.
\frac{15}{14}-\frac{15\times 2}{14\times 9}
Me whakarea te \frac{15}{14} ki te \frac{2}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{15}{14}-\frac{30}{126}
Mahia ngā whakarea i roto i te hautanga \frac{15\times 2}{14\times 9}.
\frac{15}{14}-\frac{5}{21}
Whakahekea te hautanga \frac{30}{126} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{45}{42}-\frac{10}{42}
Ko te maha noa iti rawa atu o 14 me 21 ko 42. Me tahuri \frac{15}{14} me \frac{5}{21} ki te hautau me te tautūnga 42.
\frac{45-10}{42}
Tā te mea he rite te tauraro o \frac{45}{42} me \frac{10}{42}, me tango rāua mā te tango i ō raua taurunga.
\frac{35}{42}
Tangohia te 10 i te 45, ka 35.
\frac{5}{6}
Whakahekea te hautanga \frac{35}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}