Aromātai
\frac{20}{17}\approx 1.176470588
Tauwehe
\frac{2 ^ {2} \cdot 5}{17} = 1\frac{3}{17} = 1.1764705882352942
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(1\times 17+6\right)\times 20}{17\left(1\times 20+3\right)}
Whakawehe \frac{1\times 17+6}{17} ki te \frac{1\times 20+3}{20} mā te whakarea \frac{1\times 17+6}{17} ki te tau huripoki o \frac{1\times 20+3}{20}.
\frac{\left(17+6\right)\times 20}{17\left(1\times 20+3\right)}
Whakareatia te 1 ki te 17, ka 17.
\frac{23\times 20}{17\left(1\times 20+3\right)}
Tāpirihia te 17 ki te 6, ka 23.
\frac{460}{17\left(1\times 20+3\right)}
Whakareatia te 23 ki te 20, ka 460.
\frac{460}{17\left(20+3\right)}
Whakareatia te 1 ki te 20, ka 20.
\frac{460}{17\times 23}
Tāpirihia te 20 ki te 3, ka 23.
\frac{460}{391}
Whakareatia te 17 ki te 23, ka 391.
\frac{20}{17}
Whakahekea te hautanga \frac{460}{391} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 23.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}