Aromātai
\frac{23}{12}\approx 1.916666667
Tauwehe
\frac{23}{3 \cdot 2 ^ {2}} = 1\frac{11}{12} = 1.9166666666666667
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(1\times 9+5\right)\times 3}{9\left(2\times 3+1\right)}-\left(-3.25\times \frac{5}{13}\right)
Whakawehe \frac{1\times 9+5}{9} ki te \frac{2\times 3+1}{3} mā te whakarea \frac{1\times 9+5}{9} ki te tau huripoki o \frac{2\times 3+1}{3}.
\frac{5+9}{3\left(1+2\times 3\right)}-\left(-3.25\times \frac{5}{13}\right)
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{14}{3\left(1+2\times 3\right)}-\left(-3.25\times \frac{5}{13}\right)
Tāpirihia te 5 ki te 9, ka 14.
\frac{14}{3\left(1+6\right)}-\left(-3.25\times \frac{5}{13}\right)
Whakareatia te 2 ki te 3, ka 6.
\frac{14}{3\times 7}-\left(-3.25\times \frac{5}{13}\right)
Tāpirihia te 1 ki te 6, ka 7.
\frac{14}{21}-\left(-3.25\times \frac{5}{13}\right)
Whakareatia te 3 ki te 7, ka 21.
\frac{2}{3}-\left(-3.25\times \frac{5}{13}\right)
Whakahekea te hautanga \frac{14}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{2}{3}-\left(-\frac{13}{4}\times \frac{5}{13}\right)
Me tahuri ki tau ā-ira -3.25 ki te hautau -\frac{325}{100}. Whakahekea te hautanga -\frac{325}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{2}{3}-\frac{-13\times 5}{4\times 13}
Me whakarea te -\frac{13}{4} ki te \frac{5}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{3}-\frac{-65}{52}
Mahia ngā whakarea i roto i te hautanga \frac{-13\times 5}{4\times 13}.
\frac{2}{3}-\left(-\frac{5}{4}\right)
Whakahekea te hautanga \frac{-65}{52} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 13.
\frac{2}{3}+\frac{5}{4}
Ko te tauaro o -\frac{5}{4} ko \frac{5}{4}.
\frac{8}{12}+\frac{15}{12}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{2}{3} me \frac{5}{4} ki te hautau me te tautūnga 12.
\frac{8+15}{12}
Tā te mea he rite te tauraro o \frac{8}{12} me \frac{15}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{23}{12}
Tāpirihia te 8 ki te 15, ka 23.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}