Aromātai
\frac{2}{3}\approx 0.666666667
Tauwehe
\frac{2}{3} = 0.6666666666666666
Tohaina
Kua tāruatia ki te papatopenga
\frac{12+5}{12}-\frac{3}{4}
Whakareatia te 1 ki te 12, ka 12.
\frac{17}{12}-\frac{3}{4}
Tāpirihia te 12 ki te 5, ka 17.
\frac{17}{12}-\frac{9}{12}
Ko te maha noa iti rawa atu o 12 me 4 ko 12. Me tahuri \frac{17}{12} me \frac{3}{4} ki te hautau me te tautūnga 12.
\frac{17-9}{12}
Tā te mea he rite te tauraro o \frac{17}{12} me \frac{9}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{8}{12}
Tangohia te 9 i te 17, ka 8.
\frac{2}{3}
Whakahekea te hautanga \frac{8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}