Aromātai
\frac{67}{15}\approx 4.466666667
Tauwehe
\frac{67}{3 \cdot 5} = 4\frac{7}{15} = 4.466666666666667
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
1 \frac { 5 } { 12 } + 2 \frac { 4 } { 5 } + \frac { 1 } { 4 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{12+5}{12}+\frac{2\times 5+4}{5}+\frac{1}{4}
Whakareatia te 1 ki te 12, ka 12.
\frac{17}{12}+\frac{2\times 5+4}{5}+\frac{1}{4}
Tāpirihia te 12 ki te 5, ka 17.
\frac{17}{12}+\frac{10+4}{5}+\frac{1}{4}
Whakareatia te 2 ki te 5, ka 10.
\frac{17}{12}+\frac{14}{5}+\frac{1}{4}
Tāpirihia te 10 ki te 4, ka 14.
\frac{85}{60}+\frac{168}{60}+\frac{1}{4}
Ko te maha noa iti rawa atu o 12 me 5 ko 60. Me tahuri \frac{17}{12} me \frac{14}{5} ki te hautau me te tautūnga 60.
\frac{85+168}{60}+\frac{1}{4}
Tā te mea he rite te tauraro o \frac{85}{60} me \frac{168}{60}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{253}{60}+\frac{1}{4}
Tāpirihia te 85 ki te 168, ka 253.
\frac{253}{60}+\frac{15}{60}
Ko te maha noa iti rawa atu o 60 me 4 ko 60. Me tahuri \frac{253}{60} me \frac{1}{4} ki te hautau me te tautūnga 60.
\frac{253+15}{60}
Tā te mea he rite te tauraro o \frac{253}{60} me \frac{15}{60}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{268}{60}
Tāpirihia te 253 ki te 15, ka 268.
\frac{67}{15}
Whakahekea te hautanga \frac{268}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}