Aromātai
\frac{31}{10}=3.1
Tauwehe
\frac{31}{2 \cdot 5} = 3\frac{1}{10} = 3.1
Tohaina
Kua tāruatia ki te papatopenga
\frac{10+5}{10}+\frac{1\times 10+6}{10}
Whakareatia te 1 ki te 10, ka 10.
\frac{15}{10}+\frac{1\times 10+6}{10}
Tāpirihia te 10 ki te 5, ka 15.
\frac{3}{2}+\frac{1\times 10+6}{10}
Whakahekea te hautanga \frac{15}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{3}{2}+\frac{10+6}{10}
Whakareatia te 1 ki te 10, ka 10.
\frac{3}{2}+\frac{16}{10}
Tāpirihia te 10 ki te 6, ka 16.
\frac{3}{2}+\frac{8}{5}
Whakahekea te hautanga \frac{16}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{15}{10}+\frac{16}{10}
Ko te maha noa iti rawa atu o 2 me 5 ko 10. Me tahuri \frac{3}{2} me \frac{8}{5} ki te hautau me te tautūnga 10.
\frac{15+16}{10}
Tā te mea he rite te tauraro o \frac{15}{10} me \frac{16}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{31}{10}
Tāpirihia te 15 ki te 16, ka 31.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}