Whakaoti mō x
x = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
1\times 3=\frac{3}{4}x\times \frac{1\times 5+1}{5}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
3=\frac{3}{4}x\times \frac{1\times 5+1}{5}
Whakareatia te 1 ki te 3, ka 3.
3=\frac{3}{4}x\times \frac{5+1}{5}
Whakareatia te 1 ki te 5, ka 5.
3=\frac{3}{4}x\times \frac{6}{5}
Tāpirihia te 5 ki te 1, ka 6.
3=\frac{3\times 6}{4\times 5}x
Me whakarea te \frac{3}{4} ki te \frac{6}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
3=\frac{18}{20}x
Mahia ngā whakarea i roto i te hautanga \frac{3\times 6}{4\times 5}.
3=\frac{9}{10}x
Whakahekea te hautanga \frac{18}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{9}{10}x=3
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=3\times \frac{10}{9}
Me whakarea ngā taha e rua ki te \frac{10}{9}, te tau utu o \frac{9}{10}.
x=\frac{3\times 10}{9}
Tuhia te 3\times \frac{10}{9} hei hautanga kotahi.
x=\frac{30}{9}
Whakareatia te 3 ki te 10, ka 30.
x=\frac{10}{3}
Whakahekea te hautanga \frac{30}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}