Aromātai
\frac{37}{20}=1.85
Tauwehe
\frac{37}{2 ^ {2} \cdot 5} = 1\frac{17}{20} = 1.85
Tohaina
Kua tāruatia ki te papatopenga
\frac{10+3}{10}+\frac{1\times 5+4}{5}-\frac{1\times 4+1}{4}
Whakareatia te 1 ki te 10, ka 10.
\frac{13}{10}+\frac{1\times 5+4}{5}-\frac{1\times 4+1}{4}
Tāpirihia te 10 ki te 3, ka 13.
\frac{13}{10}+\frac{5+4}{5}-\frac{1\times 4+1}{4}
Whakareatia te 1 ki te 5, ka 5.
\frac{13}{10}+\frac{9}{5}-\frac{1\times 4+1}{4}
Tāpirihia te 5 ki te 4, ka 9.
\frac{13}{10}+\frac{18}{10}-\frac{1\times 4+1}{4}
Ko te maha noa iti rawa atu o 10 me 5 ko 10. Me tahuri \frac{13}{10} me \frac{9}{5} ki te hautau me te tautūnga 10.
\frac{13+18}{10}-\frac{1\times 4+1}{4}
Tā te mea he rite te tauraro o \frac{13}{10} me \frac{18}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{31}{10}-\frac{1\times 4+1}{4}
Tāpirihia te 13 ki te 18, ka 31.
\frac{31}{10}-\frac{4+1}{4}
Whakareatia te 1 ki te 4, ka 4.
\frac{31}{10}-\frac{5}{4}
Tāpirihia te 4 ki te 1, ka 5.
\frac{62}{20}-\frac{25}{20}
Ko te maha noa iti rawa atu o 10 me 4 ko 20. Me tahuri \frac{31}{10} me \frac{5}{4} ki te hautau me te tautūnga 20.
\frac{62-25}{20}
Tā te mea he rite te tauraro o \frac{62}{20} me \frac{25}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{37}{20}
Tangohia te 25 i te 62, ka 37.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}