Aromātai
\frac{1276}{3131}\approx 0.407537528
Tauwehe
\frac{2 ^ {2} \cdot 11 \cdot 29}{31 \cdot 101} = 0.407537527946343
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{9+2}{9}}{3-\frac{\frac{5}{36}+\frac{1\times 9+1}{9}\times 0\times 6}{145}}
Whakareatia te 1 ki te 9, ka 9.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{1\times 9+1}{9}\times 0\times 6}{145}}
Tāpirihia te 9 ki te 2, ka 11.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{9+1}{9}\times 0\times 6}{145}}
Whakareatia te 1 ki te 9, ka 9.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{10}{9}\times 0\times 6}{145}}
Tāpirihia te 9 ki te 1, ka 10.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+0\times 6}{145}}
Whakareatia te \frac{10}{9} ki te 0, ka 0.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+0}{145}}
Whakareatia te 0 ki te 6, ka 0.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}}{145}}
Tāpirihia te \frac{5}{36} ki te 0, ka \frac{5}{36}.
\frac{\frac{11}{9}}{3-\frac{5}{36\times 145}}
Tuhia te \frac{\frac{5}{36}}{145} hei hautanga kotahi.
\frac{\frac{11}{9}}{3-\frac{5}{5220}}
Whakareatia te 36 ki te 145, ka 5220.
\frac{\frac{11}{9}}{3-\frac{1}{1044}}
Whakahekea te hautanga \frac{5}{5220} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\frac{11}{9}}{\frac{3132}{1044}-\frac{1}{1044}}
Me tahuri te 3 ki te hautau \frac{3132}{1044}.
\frac{\frac{11}{9}}{\frac{3132-1}{1044}}
Tā te mea he rite te tauraro o \frac{3132}{1044} me \frac{1}{1044}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{11}{9}}{\frac{3131}{1044}}
Tangohia te 1 i te 3132, ka 3131.
\frac{11}{9}\times \frac{1044}{3131}
Whakawehe \frac{11}{9} ki te \frac{3131}{1044} mā te whakarea \frac{11}{9} ki te tau huripoki o \frac{3131}{1044}.
\frac{11\times 1044}{9\times 3131}
Me whakarea te \frac{11}{9} ki te \frac{1044}{3131} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{11484}{28179}
Mahia ngā whakarea i roto i te hautanga \frac{11\times 1044}{9\times 3131}.
\frac{1276}{3131}
Whakahekea te hautanga \frac{11484}{28179} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}