Aromātai
0.5
Tauwehe
\frac{1}{2} = 0.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{9+2}{9}}{3-\frac{\frac{5}{36}+\frac{1\times 9+1}{9}\times 0.6}{1.45}}
Whakareatia te 1 ki te 9, ka 9.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{1\times 9+1}{9}\times 0.6}{1.45}}
Tāpirihia te 9 ki te 2, ka 11.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{9+1}{9}\times 0.6}{1.45}}
Whakareatia te 1 ki te 9, ka 9.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{10}{9}\times 0.6}{1.45}}
Tāpirihia te 9 ki te 1, ka 10.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{10}{9}\times \frac{3}{5}}{1.45}}
Me tahuri ki tau ā-ira 0.6 ki te hautau \frac{6}{10}. Whakahekea te hautanga \frac{6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{10\times 3}{9\times 5}}{1.45}}
Me whakarea te \frac{10}{9} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{30}{45}}{1.45}}
Mahia ngā whakarea i roto i te hautanga \frac{10\times 3}{9\times 5}.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{2}{3}}{1.45}}
Whakahekea te hautanga \frac{30}{45} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{24}{36}}{1.45}}
Ko te maha noa iti rawa atu o 36 me 3 ko 36. Me tahuri \frac{5}{36} me \frac{2}{3} ki te hautau me te tautūnga 36.
\frac{\frac{11}{9}}{3-\frac{\frac{5+24}{36}}{1.45}}
Tā te mea he rite te tauraro o \frac{5}{36} me \frac{24}{36}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{11}{9}}{3-\frac{\frac{29}{36}}{1.45}}
Tāpirihia te 5 ki te 24, ka 29.
\frac{\frac{11}{9}}{3-\frac{29}{36\times 1.45}}
Tuhia te \frac{\frac{29}{36}}{1.45} hei hautanga kotahi.
\frac{\frac{11}{9}}{3-\frac{29}{52.2}}
Whakareatia te 36 ki te 1.45, ka 52.2.
\frac{\frac{11}{9}}{3-\frac{290}{522}}
Whakarohaina te \frac{29}{52.2} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{\frac{11}{9}}{3-\frac{5}{9}}
Whakahekea te hautanga \frac{290}{522} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 58.
\frac{\frac{11}{9}}{\frac{27}{9}-\frac{5}{9}}
Me tahuri te 3 ki te hautau \frac{27}{9}.
\frac{\frac{11}{9}}{\frac{27-5}{9}}
Tā te mea he rite te tauraro o \frac{27}{9} me \frac{5}{9}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{11}{9}}{\frac{22}{9}}
Tangohia te 5 i te 27, ka 22.
\frac{11}{9}\times \frac{9}{22}
Whakawehe \frac{11}{9} ki te \frac{22}{9} mā te whakarea \frac{11}{9} ki te tau huripoki o \frac{22}{9}.
\frac{11\times 9}{9\times 22}
Me whakarea te \frac{11}{9} ki te \frac{9}{22} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{11}{22}
Me whakakore tahi te 9 i te taurunga me te tauraro.
\frac{1}{2}
Whakahekea te hautanga \frac{11}{22} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}