Aromātai
\frac{21}{20}=1.05
Tauwehe
\frac{3 \cdot 7}{2 ^ {2} \cdot 5} = 1\frac{1}{20} = 1.05
Tohaina
Kua tāruatia ki te papatopenga
\frac{15+2}{15}-\frac{1}{12}
Whakareatia te 1 ki te 15, ka 15.
\frac{17}{15}-\frac{1}{12}
Tāpirihia te 15 ki te 2, ka 17.
\frac{68}{60}-\frac{5}{60}
Ko te maha noa iti rawa atu o 15 me 12 ko 60. Me tahuri \frac{17}{15} me \frac{1}{12} ki te hautau me te tautūnga 60.
\frac{68-5}{60}
Tā te mea he rite te tauraro o \frac{68}{60} me \frac{5}{60}, me tango rāua mā te tango i ō raua taurunga.
\frac{63}{60}
Tangohia te 5 i te 68, ka 63.
\frac{21}{20}
Whakahekea te hautanga \frac{63}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}