Whakaoti mō y
y=\frac{135}{142}\approx 0.950704225
Graph
Tohaina
Kua tāruatia ki te papatopenga
12\left(1\times 9+1\right)y+42y-20y=27\left(1\times 4+1\right)
Me whakarea ngā taha e rua o te whārite ki te 108, arā, te tauraro pātahi he tino iti rawa te kitea o 9,18,27,4.
12\left(9+1\right)y+42y-20y=27\left(1\times 4+1\right)
Whakareatia te 1 ki te 9, ka 9.
12\times 10y+42y-20y=27\left(1\times 4+1\right)
Tāpirihia te 9 ki te 1, ka 10.
120y+42y-20y=27\left(1\times 4+1\right)
Whakareatia te 12 ki te 10, ka 120.
162y-20y=27\left(1\times 4+1\right)
Pahekotia te 120y me 42y, ka 162y.
142y=27\left(1\times 4+1\right)
Pahekotia te 162y me -20y, ka 142y.
142y=27\left(4+1\right)
Whakareatia te 1 ki te 4, ka 4.
142y=27\times 5
Tāpirihia te 4 ki te 1, ka 5.
142y=135
Whakareatia te 27 ki te 5, ka 135.
y=\frac{135}{142}
Whakawehea ngā taha e rua ki te 142.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}