Aromātai
\frac{11}{2}=5.5
Tauwehe
\frac{11}{2} = 5\frac{1}{2} = 5.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{4+1}{4}+\frac{2\times 3+2}{3}\times \frac{1\times 4+3}{4}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Whakareatia te 1 ki te 4, ka 4.
\frac{5}{4}+\frac{2\times 3+2}{3}\times \frac{1\times 4+3}{4}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{5}{4}+\frac{6+2}{3}\times \frac{1\times 4+3}{4}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Whakareatia te 2 ki te 3, ka 6.
\frac{5}{4}+\frac{8}{3}\times \frac{1\times 4+3}{4}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Tāpirihia te 6 ki te 2, ka 8.
\frac{5}{4}+\frac{8}{3}\times \frac{4+3}{4}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Whakareatia te 1 ki te 4, ka 4.
\frac{5}{4}+\frac{8}{3}\times \frac{7}{4}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Tāpirihia te 4 ki te 3, ka 7.
\frac{5}{4}+\frac{8\times 7}{3\times 4}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Me whakarea te \frac{8}{3} ki te \frac{7}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{5}{4}+\frac{56}{12}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Mahia ngā whakarea i roto i te hautanga \frac{8\times 7}{3\times 4}.
\frac{5}{4}+\frac{14}{3}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Whakahekea te hautanga \frac{56}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{15}{12}+\frac{56}{12}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Ko te maha noa iti rawa atu o 4 me 3 ko 12. Me tahuri \frac{5}{4} me \frac{14}{3} ki te hautau me te tautūnga 12.
\frac{15+56}{12}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Tā te mea he rite te tauraro o \frac{15}{12} me \frac{56}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{71}{12}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Tāpirihia te 15 ki te 56, ka 71.
\frac{71}{12}-\frac{\left(3\times 6+1\right)\times 5}{6\left(7\times 5+3\right)}
Whakawehe \frac{3\times 6+1}{6} ki te \frac{7\times 5+3}{5} mā te whakarea \frac{3\times 6+1}{6} ki te tau huripoki o \frac{7\times 5+3}{5}.
\frac{71}{12}-\frac{\left(18+1\right)\times 5}{6\left(7\times 5+3\right)}
Whakareatia te 3 ki te 6, ka 18.
\frac{71}{12}-\frac{19\times 5}{6\left(7\times 5+3\right)}
Tāpirihia te 18 ki te 1, ka 19.
\frac{71}{12}-\frac{95}{6\left(7\times 5+3\right)}
Whakareatia te 19 ki te 5, ka 95.
\frac{71}{12}-\frac{95}{6\left(35+3\right)}
Whakareatia te 7 ki te 5, ka 35.
\frac{71}{12}-\frac{95}{6\times 38}
Tāpirihia te 35 ki te 3, ka 38.
\frac{71}{12}-\frac{95}{228}
Whakareatia te 6 ki te 38, ka 228.
\frac{71}{12}-\frac{5}{12}
Whakahekea te hautanga \frac{95}{228} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 19.
\frac{71-5}{12}
Tā te mea he rite te tauraro o \frac{71}{12} me \frac{5}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{66}{12}
Tangohia te 5 i te 71, ka 66.
\frac{11}{2}
Whakahekea te hautanga \frac{66}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}