Aromātai
27
Tauwehe
3^{3}
Tohaina
Kua tāruatia ki te papatopenga
\frac{3+1}{3}\times \frac{5\times 5+2}{5}\times 3.75
Whakareatia te 1 ki te 3, ka 3.
\frac{4}{3}\times \frac{5\times 5+2}{5}\times 3.75
Tāpirihia te 3 ki te 1, ka 4.
\frac{4}{3}\times \frac{25+2}{5}\times 3.75
Whakareatia te 5 ki te 5, ka 25.
\frac{4}{3}\times \frac{27}{5}\times 3.75
Tāpirihia te 25 ki te 2, ka 27.
\frac{4\times 27}{3\times 5}\times 3.75
Me whakarea te \frac{4}{3} ki te \frac{27}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{108}{15}\times 3.75
Mahia ngā whakarea i roto i te hautanga \frac{4\times 27}{3\times 5}.
\frac{36}{5}\times 3.75
Whakahekea te hautanga \frac{108}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{36}{5}\times \frac{15}{4}
Me tahuri ki tau ā-ira 3.75 ki te hautau \frac{375}{100}. Whakahekea te hautanga \frac{375}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{36\times 15}{5\times 4}
Me whakarea te \frac{36}{5} ki te \frac{15}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{540}{20}
Mahia ngā whakarea i roto i te hautanga \frac{36\times 15}{5\times 4}.
27
Whakawehea te 540 ki te 20, kia riro ko 27.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}