Aromātai
\frac{113}{12}\approx 9.416666667
Tauwehe
\frac{113}{2 ^ {2} \cdot 3} = 9\frac{5}{12} = 9.416666666666666
Tohaina
Kua tāruatia ki te papatopenga
\frac{3+1}{3}\times \frac{4\times 2+1}{2}+\frac{5\times 3+2}{3}-\frac{2\times 4+1}{4}
Whakareatia te 1 ki te 3, ka 3.
\frac{4}{3}\times \frac{4\times 2+1}{2}+\frac{5\times 3+2}{3}-\frac{2\times 4+1}{4}
Tāpirihia te 3 ki te 1, ka 4.
\frac{4}{3}\times \frac{8+1}{2}+\frac{5\times 3+2}{3}-\frac{2\times 4+1}{4}
Whakareatia te 4 ki te 2, ka 8.
\frac{4}{3}\times \frac{9}{2}+\frac{5\times 3+2}{3}-\frac{2\times 4+1}{4}
Tāpirihia te 8 ki te 1, ka 9.
\frac{4\times 9}{3\times 2}+\frac{5\times 3+2}{3}-\frac{2\times 4+1}{4}
Me whakarea te \frac{4}{3} ki te \frac{9}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{36}{6}+\frac{5\times 3+2}{3}-\frac{2\times 4+1}{4}
Mahia ngā whakarea i roto i te hautanga \frac{4\times 9}{3\times 2}.
6+\frac{5\times 3+2}{3}-\frac{2\times 4+1}{4}
Whakawehea te 36 ki te 6, kia riro ko 6.
6+\frac{15+2}{3}-\frac{2\times 4+1}{4}
Whakareatia te 5 ki te 3, ka 15.
6+\frac{17}{3}-\frac{2\times 4+1}{4}
Tāpirihia te 15 ki te 2, ka 17.
\frac{18}{3}+\frac{17}{3}-\frac{2\times 4+1}{4}
Me tahuri te 6 ki te hautau \frac{18}{3}.
\frac{18+17}{3}-\frac{2\times 4+1}{4}
Tā te mea he rite te tauraro o \frac{18}{3} me \frac{17}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{35}{3}-\frac{2\times 4+1}{4}
Tāpirihia te 18 ki te 17, ka 35.
\frac{35}{3}-\frac{8+1}{4}
Whakareatia te 2 ki te 4, ka 8.
\frac{35}{3}-\frac{9}{4}
Tāpirihia te 8 ki te 1, ka 9.
\frac{140}{12}-\frac{27}{12}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{35}{3} me \frac{9}{4} ki te hautau me te tautūnga 12.
\frac{140-27}{12}
Tā te mea he rite te tauraro o \frac{140}{12} me \frac{27}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{113}{12}
Tangohia te 27 i te 140, ka 113.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}