Aromātai
\frac{2}{15}\approx 0.133333333
Tauwehe
\frac{2}{3 \cdot 5} = 0.13333333333333333
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
1 \frac { 1 } { 2 } \times 0.16 \div 1 \frac { 4 } { 5 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{2+1}{2}\times 0.16}{\frac{1\times 5+4}{5}}
Whakareatia te 1 ki te 2, ka 2.
\frac{\frac{3}{2}\times 0.16}{\frac{1\times 5+4}{5}}
Tāpirihia te 2 ki te 1, ka 3.
\frac{\frac{3}{2}\times \frac{4}{25}}{\frac{1\times 5+4}{5}}
Me tahuri ki tau ā-ira 0.16 ki te hautau \frac{16}{100}. Whakahekea te hautanga \frac{16}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{\frac{3\times 4}{2\times 25}}{\frac{1\times 5+4}{5}}
Me whakarea te \frac{3}{2} ki te \frac{4}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{12}{50}}{\frac{1\times 5+4}{5}}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 4}{2\times 25}.
\frac{\frac{6}{25}}{\frac{1\times 5+4}{5}}
Whakahekea te hautanga \frac{12}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{6}{25}}{\frac{5+4}{5}}
Whakareatia te 1 ki te 5, ka 5.
\frac{\frac{6}{25}}{\frac{9}{5}}
Tāpirihia te 5 ki te 4, ka 9.
\frac{6}{25}\times \frac{5}{9}
Whakawehe \frac{6}{25} ki te \frac{9}{5} mā te whakarea \frac{6}{25} ki te tau huripoki o \frac{9}{5}.
\frac{6\times 5}{25\times 9}
Me whakarea te \frac{6}{25} ki te \frac{5}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{30}{225}
Mahia ngā whakarea i roto i te hautanga \frac{6\times 5}{25\times 9}.
\frac{2}{15}
Whakahekea te hautanga \frac{30}{225} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}