Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
\frac{2+1}{2}+\frac{\frac{1}{4}-\frac{2}{3}}{-\frac{5}{8}\left(-\frac{4}{9}\right)}
Whakareatia te 1 ki te 2, ka 2.
\frac{3}{2}+\frac{\frac{1}{4}-\frac{2}{3}}{-\frac{5}{8}\left(-\frac{4}{9}\right)}
Tāpirihia te 2 ki te 1, ka 3.
\frac{3}{2}+\frac{\frac{3}{12}-\frac{8}{12}}{-\frac{5}{8}\left(-\frac{4}{9}\right)}
Ko te maha noa iti rawa atu o 4 me 3 ko 12. Me tahuri \frac{1}{4} me \frac{2}{3} ki te hautau me te tautūnga 12.
\frac{3}{2}+\frac{\frac{3-8}{12}}{-\frac{5}{8}\left(-\frac{4}{9}\right)}
Tā te mea he rite te tauraro o \frac{3}{12} me \frac{8}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{2}+\frac{-\frac{5}{12}}{-\frac{5}{8}\left(-\frac{4}{9}\right)}
Tangohia te 8 i te 3, ka -5.
\frac{3}{2}+\frac{-\frac{5}{12}}{\frac{-5\left(-4\right)}{8\times 9}}
Me whakarea te -\frac{5}{8} ki te -\frac{4}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{2}+\frac{-\frac{5}{12}}{\frac{20}{72}}
Mahia ngā whakarea i roto i te hautanga \frac{-5\left(-4\right)}{8\times 9}.
\frac{3}{2}+\frac{-\frac{5}{12}}{\frac{5}{18}}
Whakahekea te hautanga \frac{20}{72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{3}{2}-\frac{5}{12}\times \frac{18}{5}
Whakawehe -\frac{5}{12} ki te \frac{5}{18} mā te whakarea -\frac{5}{12} ki te tau huripoki o \frac{5}{18}.
\frac{3}{2}+\frac{-5\times 18}{12\times 5}
Me whakarea te -\frac{5}{12} ki te \frac{18}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{2}+\frac{-90}{60}
Mahia ngā whakarea i roto i te hautanga \frac{-5\times 18}{12\times 5}.
\frac{3}{2}-\frac{3}{2}
Whakahekea te hautanga \frac{-90}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 30.
0
Tangohia te \frac{3}{2} i te \frac{3}{2}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}