Aromātai
\frac{260}{43}\approx 6.046511628
Tauwehe
\frac{5 \cdot 13 \cdot 2 ^ {2}}{43} = 6\frac{2}{43} = 6.046511627906977
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{\frac{1}{\frac{20}{3}+2}+0.05}
Whakahekea te hautanga \frac{100}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1}{\frac{1}{\frac{20}{3}+\frac{6}{3}}+0.05}
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{1}{\frac{1}{\frac{20+6}{3}}+0.05}
Tā te mea he rite te tauraro o \frac{20}{3} me \frac{6}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{\frac{1}{\frac{26}{3}}+0.05}
Tāpirihia te 20 ki te 6, ka 26.
\frac{1}{1\times \frac{3}{26}+0.05}
Whakawehe 1 ki te \frac{26}{3} mā te whakarea 1 ki te tau huripoki o \frac{26}{3}.
\frac{1}{\frac{3}{26}+0.05}
Whakareatia te 1 ki te \frac{3}{26}, ka \frac{3}{26}.
\frac{1}{\frac{3}{26}+\frac{1}{20}}
Me tahuri ki tau ā-ira 0.05 ki te hautau \frac{5}{100}. Whakahekea te hautanga \frac{5}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1}{\frac{30}{260}+\frac{13}{260}}
Ko te maha noa iti rawa atu o 26 me 20 ko 260. Me tahuri \frac{3}{26} me \frac{1}{20} ki te hautau me te tautūnga 260.
\frac{1}{\frac{30+13}{260}}
Tā te mea he rite te tauraro o \frac{30}{260} me \frac{13}{260}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{\frac{43}{260}}
Tāpirihia te 30 ki te 13, ka 43.
1\times \frac{260}{43}
Whakawehe 1 ki te \frac{43}{260} mā te whakarea 1 ki te tau huripoki o \frac{43}{260}.
\frac{260}{43}
Whakareatia te 1 ki te \frac{260}{43}, ka \frac{260}{43}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}