Aromātai
\frac{6}{31}\approx 0.193548387
Tauwehe
\frac{2 \cdot 3}{31} = 0.1935483870967742
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{\frac{14}{21}+\frac{4}{21}+\frac{8}{15\times 7}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Ko te maha noa iti rawa atu o 3 me 21 ko 21. Me tahuri \frac{2}{3} me \frac{4}{21} ki te hautau me te tautūnga 21.
\frac{1}{\frac{14+4}{21}+\frac{8}{15\times 7}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Tā te mea he rite te tauraro o \frac{14}{21} me \frac{4}{21}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{\frac{18}{21}+\frac{8}{15\times 7}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Tāpirihia te 14 ki te 4, ka 18.
\frac{1}{\frac{6}{7}+\frac{8}{15\times 7}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Whakahekea te hautanga \frac{18}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1}{\frac{6}{7}+\frac{8}{105}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Whakareatia te 15 ki te 7, ka 105.
\frac{1}{\frac{90}{105}+\frac{8}{105}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Ko te maha noa iti rawa atu o 7 me 105 ko 105. Me tahuri \frac{6}{7} me \frac{8}{105} ki te hautau me te tautūnga 105.
\frac{1}{\frac{90+8}{105}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Tā te mea he rite te tauraro o \frac{90}{105} me \frac{8}{105}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{\frac{98}{105}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Tāpirihia te 90 ki te 8, ka 98.
\frac{1}{\frac{14}{15}+\frac{16}{31\times 15}+\frac{32}{63\times 31}}\times \frac{4}{21}
Whakahekea te hautanga \frac{98}{105} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{1}{\frac{14}{15}+\frac{16}{465}+\frac{32}{63\times 31}}\times \frac{4}{21}
Whakareatia te 31 ki te 15, ka 465.
\frac{1}{\frac{434}{465}+\frac{16}{465}+\frac{32}{63\times 31}}\times \frac{4}{21}
Ko te maha noa iti rawa atu o 15 me 465 ko 465. Me tahuri \frac{14}{15} me \frac{16}{465} ki te hautau me te tautūnga 465.
\frac{1}{\frac{434+16}{465}+\frac{32}{63\times 31}}\times \frac{4}{21}
Tā te mea he rite te tauraro o \frac{434}{465} me \frac{16}{465}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{\frac{450}{465}+\frac{32}{63\times 31}}\times \frac{4}{21}
Tāpirihia te 434 ki te 16, ka 450.
\frac{1}{\frac{30}{31}+\frac{32}{63\times 31}}\times \frac{4}{21}
Whakahekea te hautanga \frac{450}{465} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
\frac{1}{\frac{30}{31}+\frac{32}{1953}}\times \frac{4}{21}
Whakareatia te 63 ki te 31, ka 1953.
\frac{1}{\frac{1890}{1953}+\frac{32}{1953}}\times \frac{4}{21}
Ko te maha noa iti rawa atu o 31 me 1953 ko 1953. Me tahuri \frac{30}{31} me \frac{32}{1953} ki te hautau me te tautūnga 1953.
\frac{1}{\frac{1890+32}{1953}}\times \frac{4}{21}
Tā te mea he rite te tauraro o \frac{1890}{1953} me \frac{32}{1953}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{\frac{1922}{1953}}\times \frac{4}{21}
Tāpirihia te 1890 ki te 32, ka 1922.
\frac{1}{\frac{62}{63}}\times \frac{4}{21}
Whakahekea te hautanga \frac{1922}{1953} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 31.
1\times \frac{63}{62}\times \frac{4}{21}
Whakawehe 1 ki te \frac{62}{63} mā te whakarea 1 ki te tau huripoki o \frac{62}{63}.
\frac{63}{62}\times \frac{4}{21}
Whakareatia te 1 ki te \frac{63}{62}, ka \frac{63}{62}.
\frac{63\times 4}{62\times 21}
Me whakarea te \frac{63}{62} ki te \frac{4}{21} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{252}{1302}
Mahia ngā whakarea i roto i te hautanga \frac{63\times 4}{62\times 21}.
\frac{6}{31}
Whakahekea te hautanga \frac{252}{1302} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 42.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}