Aromātai
\frac{63}{65536}=0.000961304
Tauwehe
\frac{3 ^ {2} \cdot 7}{2 ^ {16}} = 0.0009613037109375
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2048}+\frac{1}{2^{12}}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Tātaihia te 2 mā te pū o 11, kia riro ko 2048.
\frac{1}{2048}+\frac{1}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Tātaihia te 2 mā te pū o 12, kia riro ko 4096.
\frac{2}{4096}+\frac{1}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Ko te maha noa iti rawa atu o 2048 me 4096 ko 4096. Me tahuri \frac{1}{2048} me \frac{1}{4096} ki te hautau me te tautūnga 4096.
\frac{2+1}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Tā te mea he rite te tauraro o \frac{2}{4096} me \frac{1}{4096}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Tāpirihia te 2 ki te 1, ka 3.
\frac{3}{4096}+\frac{1}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Tātaihia te 2 mā te pū o 13, kia riro ko 8192.
\frac{6}{8192}+\frac{1}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Ko te maha noa iti rawa atu o 4096 me 8192 ko 8192. Me tahuri \frac{3}{4096} me \frac{1}{8192} ki te hautau me te tautūnga 8192.
\frac{6+1}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Tā te mea he rite te tauraro o \frac{6}{8192} me \frac{1}{8192}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Tāpirihia te 6 ki te 1, ka 7.
\frac{7}{8192}+\frac{1}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Tātaihia te 2 mā te pū o 14, kia riro ko 16384.
\frac{14}{16384}+\frac{1}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Ko te maha noa iti rawa atu o 8192 me 16384 ko 16384. Me tahuri \frac{7}{8192} me \frac{1}{16384} ki te hautau me te tautūnga 16384.
\frac{14+1}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Tā te mea he rite te tauraro o \frac{14}{16384} me \frac{1}{16384}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{15}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Tāpirihia te 14 ki te 1, ka 15.
\frac{15}{16384}+\frac{1}{32768}+\frac{1}{2^{16}}
Tātaihia te 2 mā te pū o 15, kia riro ko 32768.
\frac{30}{32768}+\frac{1}{32768}+\frac{1}{2^{16}}
Ko te maha noa iti rawa atu o 16384 me 32768 ko 32768. Me tahuri \frac{15}{16384} me \frac{1}{32768} ki te hautau me te tautūnga 32768.
\frac{30+1}{32768}+\frac{1}{2^{16}}
Tā te mea he rite te tauraro o \frac{30}{32768} me \frac{1}{32768}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{31}{32768}+\frac{1}{2^{16}}
Tāpirihia te 30 ki te 1, ka 31.
\frac{31}{32768}+\frac{1}{65536}
Tātaihia te 2 mā te pū o 16, kia riro ko 65536.
\frac{62}{65536}+\frac{1}{65536}
Ko te maha noa iti rawa atu o 32768 me 65536 ko 65536. Me tahuri \frac{31}{32768} me \frac{1}{65536} ki te hautau me te tautūnga 65536.
\frac{62+1}{65536}
Tā te mea he rite te tauraro o \frac{62}{65536} me \frac{1}{65536}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{63}{65536}
Tāpirihia te 62 ki te 1, ka 63.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}