Whakaoti mō b
b=\sqrt{3}\approx 1.732050808
b=-\sqrt{3}\approx -1.732050808
Tohaina
Kua tāruatia ki te papatopenga
1+b^{2}=2^{2}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
1+b^{2}=4
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
b^{2}=4-1
Tangohia te 1 mai i ngā taha e rua.
b^{2}=3
Tangohia te 1 i te 4, ka 3.
b=\sqrt{3} b=-\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
1+b^{2}=2^{2}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
1+b^{2}=4
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
1+b^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
-3+b^{2}=0
Tangohia te 4 i te 1, ka -3.
b^{2}-3=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
b=\frac{0±\sqrt{0^{2}-4\left(-3\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\left(-3\right)}}{2}
Pūrua 0.
b=\frac{0±\sqrt{12}}{2}
Whakareatia -4 ki te -3.
b=\frac{0±2\sqrt{3}}{2}
Tuhia te pūtakerua o te 12.
b=\sqrt{3}
Nā, me whakaoti te whārite b=\frac{0±2\sqrt{3}}{2} ina he tāpiri te ±.
b=-\sqrt{3}
Nā, me whakaoti te whārite b=\frac{0±2\sqrt{3}}{2} ina he tango te ±.
b=\sqrt{3} b=-\sqrt{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}