Whakaoti mō a
a=-\frac{8}{25}=-0.32
Tohaina
Kua tāruatia ki te papatopenga
a\times \frac{25}{4}+3=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a\times \frac{25}{4}=1-3
Tangohia te 3 mai i ngā taha e rua.
a\times \frac{25}{4}=-2
Tangohia te 3 i te 1, ka -2.
a=-2\times \frac{4}{25}
Me whakarea ngā taha e rua ki te \frac{4}{25}, te tau utu o \frac{25}{4}.
a=\frac{-2\times 4}{25}
Tuhia te -2\times \frac{4}{25} hei hautanga kotahi.
a=\frac{-8}{25}
Whakareatia te -2 ki te 4, ka -8.
a=-\frac{8}{25}
Ka taea te hautanga \frac{-8}{25} te tuhi anō ko -\frac{8}{25} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}