Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō D (complex solution)
Tick mark Image
Whakaoti mō D
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{667}=\frac{x\times 10^{-11}\times 2\times 2}{D^{2}}
Whakawehea ngā taha e rua ki te 667.
D^{2}=667x\times 10^{-11}\times 2\times 2
Me whakarea ngā taha e rua o te whārite ki te 667D^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 667,D^{2}.
D^{2}=667x\times \frac{1}{100000000000}\times 2\times 2
Tātaihia te 10 mā te pū o -11, kia riro ko \frac{1}{100000000000}.
D^{2}=\frac{667}{100000000000}x\times 2\times 2
Whakareatia te 667 ki te \frac{1}{100000000000}, ka \frac{667}{100000000000}.
D^{2}=\frac{667}{50000000000}x\times 2
Whakareatia te \frac{667}{100000000000} ki te 2, ka \frac{667}{50000000000}.
D^{2}=\frac{667}{25000000000}x
Whakareatia te \frac{667}{50000000000} ki te 2, ka \frac{667}{25000000000}.
\frac{667}{25000000000}x=D^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{\frac{667}{25000000000}x}{\frac{667}{25000000000}}=\frac{D^{2}}{\frac{667}{25000000000}}
Whakawehea ngā taha e rua o te whārite ki te \frac{667}{25000000000}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{D^{2}}{\frac{667}{25000000000}}
Mā te whakawehe ki te \frac{667}{25000000000} ka wetekia te whakareanga ki te \frac{667}{25000000000}.
x=\frac{25000000000D^{2}}{667}
Whakawehe D^{2} ki te \frac{667}{25000000000} mā te whakarea D^{2} ki te tau huripoki o \frac{667}{25000000000}.