Whakaoti mō x
x=\frac{25000000000D^{2}}{667}
D\neq 0
Whakaoti mō D (complex solution)
D=-\frac{\sqrt{6670x}}{500000}
D=\frac{\sqrt{6670x}}{500000}\text{, }x\neq 0
Whakaoti mō D
D=\frac{\sqrt{6670x}}{500000}
D=-\frac{\sqrt{6670x}}{500000}\text{, }x>0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{667}=\frac{x\times 10^{-11}\times 2\times 2}{D^{2}}
Whakawehea ngā taha e rua ki te 667.
D^{2}=667x\times 10^{-11}\times 2\times 2
Me whakarea ngā taha e rua o te whārite ki te 667D^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 667,D^{2}.
D^{2}=667x\times \frac{1}{100000000000}\times 2\times 2
Tātaihia te 10 mā te pū o -11, kia riro ko \frac{1}{100000000000}.
D^{2}=\frac{667}{100000000000}x\times 2\times 2
Whakareatia te 667 ki te \frac{1}{100000000000}, ka \frac{667}{100000000000}.
D^{2}=\frac{667}{50000000000}x\times 2
Whakareatia te \frac{667}{100000000000} ki te 2, ka \frac{667}{50000000000}.
D^{2}=\frac{667}{25000000000}x
Whakareatia te \frac{667}{50000000000} ki te 2, ka \frac{667}{25000000000}.
\frac{667}{25000000000}x=D^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{\frac{667}{25000000000}x}{\frac{667}{25000000000}}=\frac{D^{2}}{\frac{667}{25000000000}}
Whakawehea ngā taha e rua o te whārite ki te \frac{667}{25000000000}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{D^{2}}{\frac{667}{25000000000}}
Mā te whakawehe ki te \frac{667}{25000000000} ka wetekia te whakareanga ki te \frac{667}{25000000000}.
x=\frac{25000000000D^{2}}{667}
Whakawehe D^{2} ki te \frac{667}{25000000000} mā te whakarea D^{2} ki te tau huripoki o \frac{667}{25000000000}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}